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Shampoo and cleansers containing anionic surfactants 
including sodium dodecyl sulphate (SDS) often cause 
pruritus in humans. Daily application of 1–10% SDS 
for 4 days induced hind-paw scratching (an itch-related 
behaviour) in a concentration-dependent manner, and 
10% SDS also caused dermatitis, skin dryness, barrier 
disruption, and an increase in skin surface pH in mice. 
SDS-induced scratching was inhibited by the opioid 
receptor antagonist naloxone and the H1 histamine re-
ceptor antagonist terfenadine. Mast-cell deficiency did 
not inhibit SDS-induced scratching, although it almost 
completely depleted histamine in the dermis. Treatment 
with SDS increased the histamine content of the epider-
mis, but not that of the dermis. SDS treatment increased 
the gene expression and post-translation processing of 
L-histidine decarboxylase in the epidermis. The present 
results suggest that repeated application of SDS induces 
itch through increased production of epidermal histami-
ne, which results from an increase in the gene expression 
and post-translation processing of L-histidine decarboxy-
lase. Key words: sodium dodecyl sulphate; itch; mast cells; 
keratinocytes; L-histidine decarboxylase.

Accepted Feb 27, 2014; Epub ahead of print Mar 7, 2014

Acta Derm Venereol 2014

Yasushi Kuraishi, Department of Applied Pharmaco-
logy, Graduate School of Medicine and Pharmaceutical 
Sciences, University of Toyama, 2630 Sugitani, Toyama 
930-0194, Japan. E-mail: kuraisiy@pha.u-toyama.ac.jp

Many cleansers contain surfactants, and repeated expo-
sure to surfactants can cause various adverse reactions 
in the skin, such as erythema, skin dryness and itching. 
In fact, the majority of adverse cutaneous reactions to 
personal care products are presumed to be caused by 
surfactants (1, 2). Surfactants irritate the skin through 
several mechanisms, including interaction with keratin 
(3) and alteration of lipid structure and barrier function 
(4, 5). Cutaneous irritation is dependent on the duration 
and frequency of surfactant exposure as well as the con-
centration and type of surfactant.

Surfactants are categorised into 4 primary groups 
according to the charge of their hydrophilic head: 
anionic, cationic, amphoteric, and non-ionic. Anionic 

surfactants, which chemically possess a negatively char-
ged hydrophilic head, are commonly used in soaps and 
detergents because of their high detergency. Therefore, 
exposure to anionic surfactants occurs almost daily. 
The most frequently reported subjective symptom in 
surfactant users is itching (1). Itch-induced vigorous 
scratching damages the skin, causing irritation and 
dryness that worsen cutaneous lesions and increase itch. 
It is generally assumed that anionic substances, such as 
poly-L-lysine and morphine, degranulate mast cells to 
release histamine, an itch mediator (6). However, we 
have recently found that a single topical application of 
sodium laurate, an alkaline anionic surfactant, to murine 
skin increases scratching 2 h post-application and that 
the effect is not mediated by mast cell degranulation but 
rather by increased histamine production in epidermal 
keratinocytes (7). We have also shown that inhibition 
of histamine production by topical medical application 
can relieve acute scratching induced by topical applica-
tion of sodium laurate (8). These findings suggest that 
histamine produced by keratinocytes plays an important 
role in pruritus arising after washing the skin with 
anionic surfactants.

Sodium dodecyl sulphate (SDS), a neutral anionic 
surfactant found in many shampoos and cleansers, cau-
ses irritant reactions in human and animal skin (9–11). 
Repeated topical application of 10% SDS induces 
various adverse skin reactions, such as dermatitis, skin 
dryness, and barrier disruption (11). In this study, we 
first examined whether the repeated topical application 
of 10% SDS would cause pruritus in mice, and next 
determined whether histamine released from mast cells 
and/or keratinocytes would be involved in the prurito-
genic action of SDS.

MATERIALS AND METHODS

Animal
Male Slc:ICR mice were used at 7–8 weeks of age, and in a 
separate series of experiments, male mast-cell deficient mice 
(WBB6F1-W/Wv) and normal littermates (WBB6F1-+/+) were 
used at 7 weeks of age. For other details see Appendix S11.
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SDS treatment
The rostral part of the mouse back was shaved at least 3 days 
prior to the start of the experiment. SDS and N-lauroylsarcosine 
sodium salt (Nacalai Tesque, Inc., Kyoto, Japan) were dissolved 
in distilled water. SDS (10% w/v, pH 6.5) or N-lauroylsarcosine 
sodium salt solution (10% w/v, pH 7.7) was applied topically to 
the shaved skin in a volume of 50 μl; in one series of experiments 
0.1%, 1%, and 10% SDS were applied. Topical application of these 
solutions was repeated at 24-h intervals for 4 days. The severity of 
dermatitis was scored as follows: 0 : no lesion; 1: subtle erythema; 
2: mild erythema; 3: severe erythema and haemorrhage.

Assessment of skin dryness and cutaneous barrier disruption
Skin dryness was investigated by measuring stratum corneum (SC) 
hydration with a moisture checker (MY-808S; Scalar Corp., Tokyo, 
Japan); the level of hydration was expressed as relative capaci-
tance. The cutaneous barrier was investigated by measuring trans-
epidermal water loss (TEWL) with a vapor meter (VapoMeter®, 
model SWL4002; Keystone Scientific Co., Ltd. Tokyo, Japan). 
Each parameter was determined the day before the first application 
of surfactant solution and 22–24 h after each application.

Evaluation of scratching behaviour 
Observation of scratching behaviour was performed as descri-
bed previously (12, 13). A series of the following movements 
was counted as one bout of scratching: mice stretching the 
hind paw toward the treated site, leaning the head toward the 
hind paw, rapidly moving the hind paw several times, and then 
moving it to the floor (13). Hind-paw scratching behaviour 
directed towards the surfactant-treated site was observed for  
1 h on the day before the first application of surfactant solution, 
2 h after the first application, or 22–24 h after each application. 

Administration of drugs 
Terfenadine (Sigma, St. Louis, MO, USA) was dissolved in 
tap water containing 0.5% sodium carboxymethyl cellulose 
(Wako Pure Chemical Industries, Osaka, Japan) and adminis-
tered orally at a dose of 30 mg/kg 30 min before the start of 
behavioural observation. Naloxone (Sigma) was dissolved in 
physiological saline (Ohtsuka Pharmaceutical Co., Ltd., Tokyo, 
Japan) and administered subcutaneously at a dose of 1 mg/kg 
15 min before the start of behavioural observation.

Enzyme immunoassay of histamine (see Appendix S11)

Western blot analysis (see Appendix S11)

Reverse transcription-PCR (see Appendix S11)

Statistical analysis
The data are presented as means ± standard error of the mean 
(SEM). Statistical significance was evaluated using the Student’s 
t-test, two-way analysis of variance (ANOVA), or repeated 
measures two-way ANOVA followed by a post hoc Holm-Šidák 
test. p < 0.05 was considered significant. Statistical analyses were 
performed using SigmaplotTM graphing and statistical software 
(version 11.2; Systat Software, Inc., San Jose, CA, USA).

RESULTS

Induction of dermatitis and pruritus

Although we have recently found that a single topical 
application of 1% and 10% sodium laurate to the back 

skin increases hind-paw scratching in Slc:ICR mice 2 
h after application (7), a single topical application of 
10% SDS did not significantly increase hind-paw scrat-
ching in Slc:ICR mice 2 h after application; scratching 
bouts per hour were 30 ± 7 and 43 ± 7 (n = 8 each) in the 
vehicle- and SDS-treated groups, respectively. In cont-
rast to the acute effect, daily application of 0.1–10% 
SDS for 4 days increased hind-paw scratching in a 
concentration-dependent manner; the effect of 10% 
SDS was marked and highly significant (Fig. 1A). Thus, 
10% SDS was used in the subsequent experiments. 
One day following application, scratching bouts were 
slightly but significantly increased, although skin le-
sion score, SC hydration, TEWL, and skin surface pH 
were not significantly changed (Fig. 1B–F). Repeated 
application of 10% SDS increased hind-paw scratching, 
caused dermatitis, decreased SC hydration, increased 
TEWL, and increased skin surface pH (Fig. 1B–F). All 
examined parameters were time-dependently enhan-
ced during the 4-day treatment, and all changes were 
statistically significant 2 days after the start of SDS 
treatment (Fig. 1B–F). On the other hand, another neu-
tral anionic surfactant, 10% N-lauroylsarcosine sodium 
salt, did not affect cutaneous parameters (dermatitis 
score, SC hydration, TEWL, and skin surface pH) and 
did not increase scratching even after repeated topical 
application in Slc:ICR mice (Fig. 1 B–F).

Effects of naloxone and terfenadine

To confirm that SDS-induced hind-paw scratching is an 
itch-associated behaviour, we examined the effect of 
the opioid receptor antagonist naloxone. Subcutaneous 
administration of naloxone (1 mg/kg) significantly sup-
pressed hind-paw scratching induced by a 4-day topical 
application of SDS in Slc:ICR mice (Fig. 2).

Next, we examined the involvement of histamine in 
SDS-induced hind-paw scratching. Oral administration 
of the peripherally acting H1 histamine receptor anta-
gonist terfenadine (30 mg/kg) significantly suppressed 
scratching behaviour induced by a 4-day topical appli-
cation of SDS in Slc:ICR mice (Fig. 2). 

Effects of mast cell deficiency

Mast cell deficient WBB6F1-W/Wv mice and their 
normal littermates (WBB6F1-+/+) received topical 
applications of 10% SDS or vehicle to the skin once 
daily for 4 days. Repeated SDS treatment gradually 
increased hind-paw scratching in WBB6F1-W/Wv and 
WBB6F1-+/+ mice with a similar time course (Fig. 
3A). Repeated SDS treatment did not affect the his-
tamine content in the dermis of the treated skin in 
WBB6F1-+/+ mice (Fig. 3B). The histamine content 
in the dermis of the WBB6F1-W/Wv mice was approx-
imately 1/100 that of the WBB6F1-+/+ mice and was 
not increased by repeated SDS treatment (Fig. 3B).
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Histamine content in the epidermis

Although SDS-induced scratching was inhibited by 
terfenadine, it was not affected by mast cell deficiency, 
suggesting that histamine in mast cells does not play 
a key role in SDS treatment-induced scratching. We 
therefore investigated the effect of a 4-day application 
of SDS on histamine production in the epidermis. The 
content of histamine in the epidermis (0.067 ± 0.020 ng/
mg wet tissue, n = 3) was as low as 3‰ of that in the 
dermis (26.2 ± 3.6 ng/mg wet tissue, n = 3) in normal 
Slc:ICR mice. Repeated application of SDS signifi-
cantly increased the histamine content of the epidermis 
by 19-fold (Fig. 4A). The same treatment signifi-

cantly increased the content of epidermal histamine in 
WBB6F1-W/Wv mice by 41-fold; histamine content was 
0.0067 ± 0.0031 and 0.273 ± 0.065 ng/mg wet tissue in 
vehicle- and SDS-treated mice (n = 4 each), respectively.

Histamine and L-histidine decarboxylase in the epidermis

L-Histidine decarboxylase (HDC) is a key enzyme for 
the endogenous production of histamine. HDC is present 
as a low-active 74 kDa precursor protein and in an active 
53-kDa form (15). Repeated SDS application signifi-
cantly increased the expression levels of 74 and 53 kDa 
HDCs by 3.6- and 10.5-fold, respectively, in the treated 
epidermis (Fig. 4B). Unexpectedly, the level of β-actin 
was markedly decreased by SDS treatment (Fig. 4B); 

Fig. 1. Scratching behaviour, dermatitis, stratum corneum (SC) hydration, transepidermal water loss (TEWL), and skin surface pH in mice receiving 
repeated topical application of sodium dodecyl sulphate (SDS) and N-lauroylsarcosine sodium salt (NL). Slc:ICR mice received topical application of 
SDS, NL, or vehicle to the skin once daily. (A) Concentration-dependent increase of hind-paw scratching. Mice were given topical application of 0.1%, 
1%, or 10% SDS for 4 days. (B–F) Time-dependent effects of 10% SDS and 10% NL on hind-paw scratching (B), skin lesions (C), SC hydration (D), 
TEWL (E), and skin surface pH (F). Values represent the mean ± SEM (n = 6 or 8). *p < 0.05, **p < 0.01, ***p < 0.001 vs. vehicle (Holm-Šidák test).
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Fig. 2. Effects of naloxone and terfenadine on scratching behaviour induced 
by repeated topical application of sodium dodecyl sulphate (SDS). Slc:ICR 
mice received a topical application of 10% SDS to the skin once daily for 
4 days. Naloxone (1 mg/kg, subcutaneous) and terfenadine (30 mg/kg, 
oral) were administered 15 and 30 min, respectively, before the start of 
behavioural observations. Broken lines denote the number of scratching 
bouts in the water-treated group. Values represent the mean ± SEM (n = 8). 
*p < 0.05 (Student’s t-test).
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Fig. 3. Effects of mast cell deficiency on scratching behaviour induced 
by repeated topical application of sodium dodecyl sulphate (SDS) and the 
histamine content in the dermis. Mast cell deficient mice (WBB6F1-W/Wv) 
and their normal littermates (WBB6F1-+/+) received topical application of 
10% SDS or vehicle (VH, distilled water) to the skin once daily for 4 days. 
(A) Time-dependent change in scratching behaviour. Values represent the 
mean ± SEM (n = 6 or 7). (B) The histamine content in the dermis. Values 
represent the mean ± SEM (n = 4).
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the level of glyceraldehyde 3-phosphate dehydrogenase, 
another house-keeping gene, was also decreased (data 
not shown). Therefore, the HDC expression level was  
not quantified.

To examine the effects of SDS treatment on HDC 
gene expression, we determined HDC mRNA levels 
in the epidermis by reverse transcription-PCR. HDC 
mRNA levels in the epidermis gradually increased 
during the 4-day SDS treatment and changes became 
statistically significant starting 2 days after the start of 
treatment (Fig. 5).

DISCUSSION

SDS exposure is a standard method of inducing der-
matitis and dryness in animal skin, but its effectiveness 
is dependent on the duration and frequency of SDS 
exposure (9). In the present study, the daily topical 
application of 50 μl of 10% SDS gradually increased 
dermatitis, reduced SC hydration, increased TEWL, and 
increased skin surface pH over a 4-day treatment period. 
The degree of decreased SC hydration and increased 
TEWL was milder in this study than in another report, in 
which 500 μl of 10% SDS in 70% ethanol was topically 
applied once daily for 4 days in hairless HR-1 mice (11). 
SDS application in our study gradually increased hind-
paw scratching, as examined 22–24 h after each SDS 

application, which may therefore be due to changes in 
cutaneous conditions rather than surfactant irritation. 
SDS-induced scratching was inhibited by naloxone. 
Opioid receptor antagonists, including naloxone, inhibit 
itching and scratching in patients with various pruritic 
diseases such as atopic dermatitis and chronic urticaria 
(16) and experimentally induced itch in humans (17). In 
animals, naloxone inhibits hind-paw scratching elicited 
by intradermal injection of pruritogens (18, 19) and 
spontaneous scratching in murine models of pathological 
pruritus (20, 21). With these findings taken into account, 
the present results suggest that hind-paw scratching in 
the SDS-treated skin is an itch-related response.

Repeated SDS exposure-induced scratching was mar-
kedly and significantly suppressed by terfenadine at the 
oral dose of 30 mg/kg. Terfenadine at this dose has been 
shown to inhibit scratching and plasma extravasation 
induced by an intradermal injection of histamine (22, 
23) but not scratching induced by other pruritogens such 
as sphingosylphosphorylcholine and nociceptin (24, 
25). With this taken into account, the above-mentioned 
results suggest that the block of histamine action by 
terfenadine in the skin is responsible for the suppres-
sion of SDS-induced scratching. Histamine is present 
mainly in mast cells in the dermis (7, 26, 27). Histamine 
content in the dermis was almost abolished by mast cell 
deficiency. Repeated SDS exposure increased hind-paw 
scratching to the same degree in mast cell-deficient 
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Fig. 4. Effects of repeated topical application of sodium dodecyl sulphate 
(SDS) on the histamine content and L-histidine decarboxylase (HDC) level 
in the epidermis. Slc:ICR mice received topical application of 10% SDS 
or vehicle (VH) to the skin once daily for 4 days. (A) Histamine content 
in the epidermis. (B) Western blotting for 53 and 74 kDa HDCs in the 
epidermis. Lanes 1–4, VH; lanes 5–8, 10% SDS. Values are presented as 
the mean ± SEM (n = 4). *p < 0.05 (Student’s t-test). 
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mice and their normal littermates. In addition, repeated 
SDS exposure did not increase histamine content in the 
dermis of mast cell deficient and normal mice. These 
results, taken together, suggest that histamine in mast 
cells and other histamine-containing dermal cells, such 
as macrophages (28), is not responsible for the repeated 
SDS application-induced scratching. 

Histamine is present in the epidermis although the level 
is very low and a single topical application of another 
surfactant, sodium laurate, transiently increases epider-
mal histamine content (7). Therefore, we examined the 
effects of repeated SDS exposure on epidermal histamine 
content and on the expression of the histamine-producing 
enzyme HDC in the epidermis. Repeated topical applica-
tion of SDS markedly increased histamine content in the 
epidermis. The same treatment also markedly increased 
the expression level of HDC mRNA. This increase was 
obvious from 2 days after the start of SDS treatment, the 
time course of which roughly corresponded to the time 
course of increase in scratching. Additionally, repeated 
SDS treatment significantly increased protein expression 
levels of 74 and 53 kDa HDCs in the epidermis. These fin-
dings suggest that repeated SDS treatment increases HDC 
protein synthesis. In mast cells, HDC is translated as a 74 
kDa precursor protein and is post-translationally cleaved 
to a 53–55 kDa species (15). The 74 kDa HDC exhibits 
low enzyme activity, and thus histamine is synthesised 
mainly by the 53 kDa HDC and then stored in granules 
(15). The amount of 53 kDa HDC present after repeated 
SDS treatment was 2.9-fold higher than that of 74 kDa 
HDC. These findings suggest that the increased histamine 
content is due to an increase of HDC protein synthesis 
and post-translation processing from 74 to 53 kDa HDC 
that results in increased epidermal histamine production.

The present results did not reveal the type of epidermal 
cells on which SDS acted. However, keratinocytes that 
account for about 95% of the cells of the epidermis ex-
press HDC and contain histamine (7, 29), and administra-
tion of sodium laurate to cultured epidermal keratinocytes 
increases the cleavage process from 74 to 53 kDa HDC 
and histamine production (7). Therefore, it is suggested 
that topically applied SDS increases HDC expression 
and histamine production in the epidermal keratinocytes. 
Although histamine is stored in granules after it is syn-
thesised by HDC in mast cells (15), it is spontaneously 
released after biosynthesis in macrophages because of 
their lack of histamine-storing granules (15, 30). Simi-
larly, increased histamine synthesis along with a lack of 
histamine-storing granules in epidermal keratinocytes 
may result in an increase in the spontaneous release of 
histamine. Thus, it is suggested that increased production 
(and content) of histamine in epidermal keratinocytes 
is responsible for the histamine-mediated scratching 
observed after repeated SDS exposure. Histamine is syn-
thesised from histidine by HDC. To our knowledge, there 
have been no previous reports on the content of histidine 

in keratinocytes. However, keratohyalin granules contain 
histidine (31), keratinocytes contain the histidine-rich 
protein filaggrin, which is degraded into amino acids 
including histidine, and there is a substantial amount of 
histidine in the SC (32). Therefore, a sufficient concentra-
tion of histidine may be present in keratinocytes.

The histamine content of the epidermis in WBB6F1-
W/Wv mice was about 1/5 of that in Slc:ICR mice after 
repeated SDS treatment, while scratching bouts were 
almost comparable between these strains. This may not 
be due to strain differences in innate histamine sensi-
tivity, because scratching bouts following intradermal 
histamine injection is much lower in WBB6F1-W/Wv 
mice than in Slc:ICR mice (33). In the present experi-
ments, scratching bouts after repeated SDS treatment 
were similar between WBB6F1-W/Wv and WBB6F1-+/+ 
mice. In addition, scratching bouts following intrader-
mal histamine injection is similar between these mice 
(33). Therefore, mast cell deficiency may not affect 
histamine sensitivity. In our preliminary experiments, 
repeated SDS treatment markedly increased nerve 
fibres in the epidermis, which might affect histamine 
sensitivity. Although further experiments are needed, 
SDS-induced changes other than histamine production 
might alter histamine sensitivity to varying degree in 
Slc:ICR and WBB6F1-W/Wv mice.

Although the detailed mechanisms of increased HDC 
expression in the epidermis remain unclear, it has been 
recently reported that activation of Toll-like receptor 
(TLR) induces HDC expression (34). Ten human and 
12 murine TLRs have been identified (35): TLR1–
TLR10 in humans, and TLR1–TLR9, TLR11, TLR12 
and TLR13 in mice (the homologue of TLR10 being a 
pseudogene). Intravenous administration of TLR2/6-, 
TLR3-, and TLR4 agonists induced HDC expression 
in the liver, spleen, and lungs (34). Skin keratinocytes 
express TLR1–6 and 9 (36–38). Although the mamma-
lian TLRs are traditionally known to sense pathogen-
associated molecular patterns, such as bacterial lipopo-
lysaccharide, lipopeptides, and flagelline, recent studies 
have demonstrated that they also detect host-derived 
molecules, such as hyaluronic acid (39, 40), heparin 
sulphate (41), fibrinogen (42), surfactant protein-A 
(43), high-mobility group box 1 (44), β-defensin (45), 
heat-shock proteins (46, 47), and messenger RNA (48). 
These endogenous ligands for TLRs can be expressed 
or released in response to tissue damage. Considering 
that skin keratinocytes express TLRs, these findings 
raise the possibility that the increase of HDC expression 
in the epidermis is due to the expression or release of 
endogenous ligands for TLRs resulting from repeated 
SDS exposure-induced inflammatory damage.

Repeated SDS application increased skin surface pH 
from 5.0 to 6.0. The time course for this increase roughly 
corresponded to the time course of increase in scratching. 
We have recently demonstrated that a single topical app-
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lication of the anionic surfactant sodium laurate increases 
scratching transiently (2–3 h after application) with an 
elevation of skin surface pH to 6.0 (7). In contrast, both 
single and repeated topical applications of N-lauroylsar-
cosine sodium salt did not increase skin surface pH and 
scratching (7; present results). These findings suggest that 
increased pH is an important factor in the pruritogenic 
activity of topically applied surfactants. A single topical 
application of sodium laurate increases post-translation 
processing from the 74 to the 53 kDa form of HDC in 
the epidermis (7). Interestingly, repeated SDS applica-
tion also increased post-translation processing of HDC 
in the epidermis. These findings suggest the possibility 
that increased pH plays a role in the mechanism of the 
post-translation processing of HDC. Although details 
of the mechanisms of HDC processing remain unclear, 
benzamidine-sensitive proteinase has been reported to be 
involved in HDC processing (49). Benzamidine-sensitive 
proteinase is activated at an alkaline pH (pH 8–9) (49, 
50). The pH values of the SDS and N-lauroylsarcosine 
sodium salt solutions were 6.5 and 7.7, respectively. An 
increase in skin surface pH results in the destruction 
of the barrier function of the SC (51), and the topical 
application of sodium hydroxide solution increases the 
subcutaneous pH from 7 to higher than 10 (52, 53). In 
a previous study, we showed that scratching bouts were 
not increased after the application of sodium hydroxide 
solution. On the basis of these findings, it is suggested 
that HDC processing is not increased by the elevation 
of extracellular pH. Although we did not determine 
the duration of intracellular pH increase, repeated SDS 
treatment might increase HDC processing through an 
elevation of intracellular pH due to both its anionic and 
surface activities. 

In conclusion, we demonstrated that repeated SDS 
application to the murine skin induced itch-associated 
scratching behaviour through an increase of histamine 
production in the epidermis, resulting from an increase 
of HDC protein synthesis and post-translation proces-
sing from 74 to 53 kDa HDC.
The authors declare no conflict of interest.
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