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Itch is described as an unpleasant or irritating skin sensation that elicits the desire or reflex

to scratch. MrgprA3, one of members of the Mrgprs family, is specifically expressed in a
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subpopulation of dorsal root ganglion (DRG) in the peripheral nervous system (PNS). These

MrgprA3-expressing DRG neurons have been identified as itch-specific neurons. They can

be activated by the compound, chloroquine, which is used as a drug to treat malaria. In the

present study, we labeled these itch-specific neurons using the method of molecular

genetic markers, and then studied their electrophysiological properties. We also recorded

the cutaneous MrgprA3� neurons retrogradely labeled by Dil dye (MrgprA3�-Dil). We first

found that MrgprA3þ neurons have a lower excitability than MrgprA3� neurons

(MrgprA3�-non-Dil and MrgprA3�-Dil). The number of action potential (AP) was reduced

more obviously in MrgprA3þ neurons than that of in MrgprA3� neurons. In most cases,

MrgprA3þ neurons only generated single AP; however, in MrgprA3� neurons, the same

stimulation could induce multiple AP firing due to the greater voltage-gated potassium (Kv)

current existence in MrgprA3þ than in MrgprA3� neurons. Thus, Kv current plays an

important role in the regulation of excitability in itch-specific neurons.
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1. Introduction

Itch (or pruritus) is an unpleasant or irritating skin sensation
that elicits the desire or reflex to scratch (Ikoma et al., 2006).
The itch signal is generated at the periphery primary sensory
neurons (DRG or trigeminal ganglia) and then sent to the
spinal cord via their central axons (Paus et al., 2006). Itch and
pain sensations are mainly mediated by small-diameter DRG
neurons with unmyelinated C fibers (Basbaum et al., 2009;
Ikoma et al., 2006). A broad overlap is shared between pain-
and itch-related peripheral mediators or receptors; and some
similar mechanisms of neuronal sensitization also happen in
the peripheral nervous system (PNS) and central nervous
system (CNS) (Ikoma et al., 2006; Schmelz, 2005). Itch and
pain, however, are two distinct sensations; each can elicit
different behavioral responses such as scratching and with-
drawal respectively (Klein et al., 2011; Liu and Ji, 2013).

Mrgprs genes (aka Mrg/SNSR) are specifically expressed in
subsets of small-diameter neurons in DRG and trigeminal
ganglia. They encode a large family of G protein-coupled
receptors (GPCRs) consisting of more than 50 members of the
mouse genome (Dong et al., 2001; Zylka et al., 2003). Recent
studies have indicated that Mrgprs function as receptors for
certain chemical pruritogens and mediate itch-associated beha-
vior. For example, β-alanine elicits histamine-independent itch
through activation of MrgprD receptor-expressing neurons (Liu
et al., 2012). BAM8-22, an endogenous bovine adrenal medulla
peptide, evokes itch through direct activation of MrgprC11
receptors in DRG (Sikand et al., 2011). MrgprA3 is a member of
the Mrgprs genes family. Our previous study indicated that
MrgprA3 is a chloroquine (CQ)-specific receptor, which directly
mediates the activation of MrgprA3þ neurons and induces
itching behavior in mice (Liu et al., 2009). MrgprA3þ neurons
can be activated by multiple chemical pruritogens—CQ, hista-
mine, SLIGRL, BAM8-22, ET-1 and α-Me-5HT—to induce itch.
Ablation of MrgprA3þ neurons is able to reduce mouse itch but
not pain behavior. When Transient Receptor Potential Vanilloid
type 1 (TPRV1), a non-selective cation channel, was specifically
expressed in MrgprA3þ neurons, the activation of MrgprA3þ

neurons with capsaicin evoked itch but not pain behavior.
Specifically, the peripheral fibers of MrgprA3þ neurons exclu-
sively innervate the epidermis of skin but are absent from the
rest of body, strongly supporting that itch sensation arises from
skin but not deep tissue. Thus, MrgprA3þ neurons are defined
as a subpopulation of itch-specific neurons (Han et al., 2013).

Itch sensation, which is evoked by pruritic chemical
agents, begins with electrical activity in a subset of peripheral
cutaneous nociceptors or pruriceptors and a subpopulation of
pruriceptive spino-thalamic tract (STT) nociceptive neurons
that convey pruritic information to the brain (Bautista et al.,
2014; LaMotte et al., 2014). The generation and conductance of
electrical signal in sensory pathways play an important role
in the formation and maintenance of itch. A recent study
suggested that the activity of MrgprA3þ neurons was
enhanced in a delayed contact hypersensitivity (CHS) model,
a model of inflammatory itch and pain (Qu et al., 2014). But
the electrophysiological property of MrgprA3þ itch neurons in
normal physiological condition remains unclear. The main
reason is a lack of specific markers for MrgprA3þ neurons.
Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
Accordingly, we generated a strain of mice to label
MrgprA3þ neurons by a genetic approach. By expressing the
tdTomato protein, these labeled neurons showed red fluor-
escence under fluorescent microscopy (Han et al., 2013). We
observed the distribution of MrgprA3þ neurons in DRG. Then
we studied their action potential (AP) firing patterns to a train
of depolarizing current injection by a patch-clamp technique.
We also analyzed the parameters of the AP. Finally, we
compared the difference of the voltage-gated potassium
(Kv) current between positive and two subsets of negative
MrgprA3 neurons (MrgprA3�-non-Dil and MrgprA3�-Dil neu-
rons) and found that MrgprA3þ neurons showed greater
sustained Kv current than both two MrgprA3� neurons
group. We expect that it can help us explain why there is
the difference in the AP firing pattern between MrgprA3þ and
MrgprA3� neurons.
2. Results

2.1. MrgprA3þ and MrgprA3� neurons connected to the
skin are labeled by molecular genetic and retrograde tracing
methods respectively

To specifically label MrgprA3þ neurons in the DRG, we
crossed Mrgpra3GFP-Cre mice with Cre-dependent ROSA26tdTo-
mato reporter mice, and obtained Mrgpra3GFP-Cre; ROSA26tdTomato

mice, as previously described (Han et al., 2013). The DRG
sections from the homozygous Mrgpra3GFP-Cre; ROSA26tdTomato

transgenic adult mice were used for the fluorescence ima-
ging. The results clearly showed that the MrgprA3þ neurons
were marked by the coexpression of GFP and tdTomato
protein (Fig. 1A–C). The green and red fluorescence could be
displayed because the GFP was restricted to express in the
cell nucleus with Cre recombinase and the tdTomato was in
the cytoplasm (Han et al., 2013). We observed the distribution
of DRG neurons on the L4–L6 levels sections and counted the
percentage of MrgprA3þ neurons on DRG sections under
different fluorescent labeling. We found that about 97% of
the GFPþ neurons and tdTomatoþ neurons (283/292 from
2 mice) were co-expressed in a subset of small-diameter
DRG neurons. This was consistent with the previous imaging
results showing that the expression of GFP–Cre was tightly
controlled by the endogenous Mrgpra3 promoter and that the
tdTomato was restricted to be expressed in the MrgprA3þ

neurons (Han et al., 2013). This observation indicates that we
are able to successfully breed the Mrgpra3GFP-Cre and ROSA26td-
Tomato transgenic mouse lines. The MrgprA3þ neurons speci-
fically labeled by the expression of GFP and tdTomato allow
us to characterize the property of subtype neurons in DRG.

After the MrgprA3þ neurons were identified, the MrgprA3�

neurons specifically innervating the skin were also labeled by
subcutaneous injection of Dil to the dorsal skin inMrgpra3GFP-Cre

mice. In cultured DRG neurons (Fig. 2A–C) and DRG sections
(Fig. 2D–F) from these labeled transgenic mice, MrgprA3þ

neurons were able to display both green (GFP) and red (Dil)
fluorescence; by contrast, only red (Dil) but not green (GFP)
labeled neurons were MrgprA3� neurons innervating the skin
(MrgprA3�-Dil). Additionally, neither tdTomato nor GFP neu-
rons, we classified them as MrgprA3�-non-Dil neurons.
m channels involved in regulation of physiological function
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Fig. 1 – MrgprA3þ neurons were identified by the expression of GFP and tdTomato. (A–C) The fluorescence imaging of DRG
sections from adult homozygous MrgprA3GFP-Cre; ROSA26tdTomato mice, the MrgprA3þ neurons were marked by GFP (A) and
tdTomato protein (B) and over 96% of GFP-expressing neurons coexpress with tdTomato (C). (D, E) MrgprA3þ neurons for
electrophysiological recording were shown in the bright field (D) and under fluorescent condition (E).

Fig. 2 – Cutaneous MrgprA3� neurons were labeled by Dil retrograde tracing in transgenic Mrgpra3GFP-Cre mice. (A–C) In
cultured DRG neurons, representative images of MrgprA3þ and MrgprA3�-Dil neurons in bright field and under fluorescent
condition. (D–F) In DRG cut section, representative image of MrgprA3þ and MrgprA3�-Dil neurons in bright field and
fluorescent condition. Note that a subset of MrgprA3�-Dil neuron was only marked by Dil.
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Fig. 3 – Depolarizing current evoked fewer APs in MrgprA3þ neurons than in MrgprA3�-non-Dil neurons. (A) Representative
trace of AP firing induced by increasing intensities of depolarizing currents (pulse duration: 200 ms). (B) The mean current
threshold to evoke AP in MrgprA3þ neurons (n¼23) was significantly higher than that in MrgprA3�-non-Dil neurons (n¼21).
(C) The mean numbers of evoked APs in MrgprA3þ neurons were significantly less than in MrgprA3�-non-Dil neurons. Data
are expressed as mean7SEM, *Po0.05; ***Po0.001; as compared with MrgprA3þ group, unpaired t-test.
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2.2. MrgprA3þ neurons fire less action potential to
depolarizing current injection

MrgprA3þ neurons with strong tdToamto fluorescence can be

easily distinguished from MrgprA3�-non-Dil neurons under a

fluorescent microscope in the patch-clamp recording condi-

tion (Figs. 1D–E and 2C). To investigate the AP firing activity in

the MrgprA3þ and in the MrgprA3� neurons, we injected a

train of depolarizing steps current (Δ¼20 pA) from 0 to 260 pA

with a duration of 200 ms through electrodes to evoke AP

firing in the whole cell current-clamp mode. The interval of

each trace was 1000 ms. Following the increase of the stimu-

lus current, MrgprA3�-non-Dil neurons generated multiple

spikes firing; however, MrgprA3þ neurons only generated an

AP, but there was a non-multiple spikes firing pattern in most

cases (Fig. 3A). The mean current threshold required to

induce MrgprA3þ neurons (n¼23) to generate the first AP

was 137.1714.4 pA, but for MrgprA3�-non-Dil neurons, the

mean current threshold was 61.776.7 pA (n¼21, Po0.001,

unpaired t-test) (Fig. 3B). In such a stimulating range of 40–

260 pA current injection, the mean firing number of APs of

MrgprA3�-non-Dil neurons was more than the MrgprA3þ

neurons (Po0.05 or 0.001, unpaired t-test) (Fig. 3C). In

MrgprA3� neurons that connect the skin (MrgprA3�-Dil,

n¼22), repetitive firing pattern was also found in most case

(Fig. 4A). In relative to MrgprA3þ neurons, the current thresh-

old was significantly smaller (Fig. 4B), and firing AP numbers

were obviously increased (Fig. 4C).
Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
2.3. MrgprA3þ and MrgprA3� neurons show different
characteristics of action potential

To determine why there is an AP firing difference between
MrgprA3þ and two subsets of MrgprA3� neurons, a series of
depolarization injection currents with short 2ms duration were
used to induce a single intact AP shape (Fig. 5A). We measured
the AP-related parameters from all recordings and compared
their values between the MrgprA3þ and two subsets of
MrgprA3� neurons. As shown in Table 1, the overshoot, max-
imum rise slope and rise slope (10–90%) of MrgprA3þ neurons
were significantly larger than the MrgprA3�-non-Dil (Po0.05 or
0.001, unpaired t-test). This indicated that the depolarizing
speed of MrgprA3þ neurons was significantly faster than
MrgprA3�-non-Dil neurons when an AP was generating. How-
ever, no significant difference was observed in upstroke phase
between MrgprA3þ and MrgprA3�-Dil neurons. Moreover, the
duration to 50% and 80% decay of MrgprA3þ neurons was
significantly longer than MrgprA3�-non-Dil and MrgprA3�-Dil
neurons (Po0.05 or 0.01, unpaired t-test), suggesting that the
after-depolarization speed of MrgprA3þ neurons was slower
than in the MrgprA3� neurons. Meanwhile, the diameter, cell
capacitance, duration at 0mV, half-width, threshold and input
resistance were not significantly different between the
MrgprA3þ and two MrgprA3� neurons groups (Fig. 5B–G). How-
ever, the resting membrane potential (RMP) of MrgprA3þ neu-
rons (�63.572.1 mV) were significantly lower than in the
MrgprA3�-non-Dil and MrgprA3�-Dil neurons (�55.171.3 mV,
�53.871.4 mV, respectively; Po0.001, unpaired t-test) (Fig. 5H).
Taken together, MrgprA3þ neurons showed different AP-related
m channels involved in regulation of physiological function
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Fig. 4 – The firing activity of MrgprA3�-Dil neurons evoked by depolarizing current. (A) Representative trace of AP firing in
MrgprA3�-Dil neurons induced by increasing depolarizing currents. (B) The mean current threshold to evoke AP in MrgprA3þ

neurons (n¼23) was significantly higher than that in MrgprA3�-Dil neurons (n¼22). (C) The mean numbers of evoked APs in
MrgprA3þ neurons were significantly less than in MrgprA3�-Dil neurons. Data are expressed as mean7SEM, **Po0.01;
***Po0.001; as compared with MrgprA3þ group, unpaired t-test.

Fig. 5 – Extended electrophysiological parameters among MrgprA3þ (n¼27), MrgprA3�-non-Dil (n¼22) and MrgprA3�-Dil
neurons (n¼24). (A) Representative AP shape evoked by depolarizing current (Δ¼50 pA, 2 ms) in a MrgprA3þ neuron.
(B) Diameter, (C) Cell capacitance, (D) Duration at 0 mV, (E) Half-width, (F) Threshold, (G) Input resistance, (H) RMP, resting
membrane potential. Values are mean7SEM, ***Po0.001; as compared with MrgprA3þ group, unpaired t-test.
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Table 1 – Electrophysiological parameters of MrgprA3þ and two subsets of MrgprA3� neurons in whole-cell patch-clamp
recording experiment.

MrgprA3þ (n¼27) MrgprA3�-non-Dil (n¼22) MrgprA3�-Dil (n¼24)

Upstroke
Overshoot (mV) 47.672.0 34.672.5*** 48.7 7 1.8
Time of overshoot (ms) 58.770.4 59.570.5 60.071.2
Maximum rise slope (mV/ms) 79.276.7 51.477.1* 80.078.1
Time of maximum rise slope (ms) 58.070.4 58.870.5 59.571.2
Rise slope (10–90%) (mV/ms) 68.175.6 45.876.1* 74.677.4
Rise time (10–90%) (ms) 0.670.1 0.770.1 0.570.1
Downstroke
Max decay slope (mV/ms) �27.471.5 �28.872.5 �30.372.2
Time of max decay slope (ms) 59.970.7 60.670.6 60.871.2
Decay slope (90–10%) (mV/ms) �22.871.5 �23.972.1 �25.371.7
Decay time (90–10%) (ms) 1.970.2 1.270.1 1.470.1
Afterpotential
AHP depth (mV) 24.171.1 24.872.0 24.371.2
Duration to 50% decay (ms) 40.272.9 26.272.5** 32.572.9*

Duration to 80% decay (ms) 90.877.4 56.977.3** 72.377.6*

Data are presented by mean7SEM. *Po0.05; **Po0.01; ***Po0.001; as compared with the MrgprA3þ group, unpaired t-test. AHP, after
hyperpolarization; MrgprA3�-non-Dil, MrgprA3 negative neurons without labeled by Dil; MrgprA3�-Dil, MrgprA3 negative neurons labeled
by Dil, which specifically innervate skin.

Fig.6 – MrgprA3þ neurons showed greater Kv currents than MrgprA3�-non-Dil neurons. (A–F) Representative traces of the
total Kv current (A, D), sustained (B, E) and transient Kv currents (C, F) in MrgprA3þ and MrgprA3�-non-Dil neurons. (G) The
mean density of total Kv currents of MrgprA3þ neurons (n¼22) was significantly higher than that of MrgprA3�-non-Dil
neurons (n¼20). (H) The mean density of sustained Kv current was significantly higher in MrgprA3þ neurons than in
MrgprA3�-non-Dil neurons. (H) There was no significant difference in the transient Kv currents between MrgprA3þ and
MrgprA3�-non-Dil neurons. Data are expressed as mean7SEM, *Po0.05; **Po0.01; ***Po0.001; as compared with MrgprA3�-
non-Dil group, unpaired t-test.
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parameters from two subsets of MrgprA3� neurons, suggesting
that they have distinct membrane properties in the
electrophysiology.

2.4. MrgprA3þ neurons show greater voltage-gated
potassium current than MrgprA3� neurons

MrgprA3þ neurons exhibited significantly fewer AP firing
numbers and lower RMP compared with two subsets of
MrgprA3� neurons. Therefore, we further tested whether
there was variation in the voltage-gated Kþ (Kv) currents,
since Kv channels play an important role in the regulation of
neuronal firing frequency and in the formation of RMP
(Maljevic and Lerche, 2013). In general, the total Kv current
consisted of sustained Kv current and transient Kv current
(A-type Kv current) (Fan et al., 2011). In the whole cell voltage-
clamp recording configuration, the total Kv current was
evoked by a train of test pulses from �60 mV to þ50 mV
with 500 ms durations, preceded by a 1000 ms prepulse to
�100 mV (Fig. 6A and D). The �40 mV holding potential with
1000 ms duration was used to inactive the transient Kv
currents (Fig. 6B and E). The subtraction of the current traces
induced at two holding potentials yielded the transient Kv
currents (Fig. 6C and F). The mean density of total Kv currents
in the MrgprA3þ neurons (n¼22) was significantly greater
compared to the MrgprA3�-non-Dil (n¼20) from �30 mV to
þ50 mV (Po0.01 or 0.001, unpaired t-test) (Fig. 6G). Our data
also indicated that the mean density of sustained Kv currents
in the MrgprA3þ neurons (n¼22) was nearly 1.6 times larger
than in the MrgprA3�-non-Dil (n¼20, Po0.001, unpaired t-
test) (Fig. 6H). But for the transient Kv currents (Fig. 6I), there
was no difference between the MrgprA3þ (n¼22) and
Fig. 7 – MrgprA3þ neurons showed greater Kv currents than Mrgp
sustained (B) and transient Kv currents (C) in MrgprA3�-Dil neu
neurons (n¼22) was significantly higher than that of MrgprA3�

current was significantly higher in MrgprA3þ neurons than in Mr
in the transient Kv currents between MrgprA3þ and MrgprA3�-
**Po0.01; ***Po0.001; as compared with MrgprA3�-Dil group, un

Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
MrgprA3�-non-Dil (n¼20). For MrgprA3�-Dil neurons
(n¼22), there were also significantly greater total (Po0.05,
0.01 or 0.001, unpaired t-test) (Fig. 7A and D) and sustained
(Fig. 7B and E) Kv current density compared with MrgprA3þ

neurons. Similar with MrgprA3�-non-Dil neurons, the tran-
sient Kv current (Fig. 7C and F) showed no significant
difference between MrgprA3þ and MrgprA3�-Dil neurons.

The significantly greater sustained Kv current in MrgprA3þ

neurons seems to reduce its AP firing activity. We pharma-
cologically blocked sustained Kv channels with 25 mM TEA
(Cao et al., 2010; Vydyanathan et al., 2005) and then measured
AP firing activity using protocol identical with Figs. 3 and 4.
The MrgprA3þ neurons (n¼10) fired multiple APs after TEA
perfusion in the bath solution for 3 min. When the TEA was
washed out, the same stimulus current induced lesser AP
(Fig. 8A). The statistic data also indicated that the mean AP
number induced in the various current injection was signifi-
cantly greater after TEA blocking compared with control and
wash condition (Fig. 8B). Meanwhile, the neurons in TEA
condition showed significantly lower current threshold
(Fig. 8C). However, no significant differences existed between
control and wash condition. Taken together, blocking sus-
tained Kv channel with TEA increases MrgprA3þ neurons' AP
firing activity.
3. Discussion

MrgprA3 receptors are restricted to express in subsets of
small-diameter sensory neurons in DRG and trigeminal gang-
lia neurons and contributed to CQ-induced itch (Liu et al.,
2009). Our previous study found that MrgprA3þ neurons are
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Fig. 8 – Inhibition of sustained Kv channels enhanced MrgprA3þ neurons' AP firing activity. (A) Representative trace showing
that blocking sustained Kv channels with 25 mM TEA induced MrgprA3þ neurons generating multiple AP firing activity.
(B) Blocking TEA-sensitive sustained Kv channels increased AP numbers evoked in various stimulus current (in A). (C) The
current threshold of MrgprA3þ neurons (n¼10) was significantly reduced in TEA condition. Values are mean7SEM, **Po0.01;
***Po0.001; NS, no significant difference; as compared with TEA group. Paired t-test was used to analysis.
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specifically linked to itch but not to pain sensation—regard-
less of the stimulus type used to activate the neurons (Han
et al., 2013). TRPA1 plays an important role in the down-
stream target of MrgprA3 receptor and mediates CQ-induced
histamine-independent itch behavior in mice (Wilson et al.,
2011). Although advances of MrgprA3 are occurring in the itch
research field, the electrophysiological property of MrgprA3
neurons still has not been reported. We employed molecular
genetic means to specifically label MrgprA3 neurons by the
expression of GFP and tdTomato. We could clearly observe
these MrgprA3 neurons in DRG under fluorescence micro-
scopy and study their electrophysiological properties by
selecting them to record. In the present study, we first
investigated the electrophysiological properties of itch-
specific MrgprA3þ neurons. Meanwhile, we also recorded
the same size MrgprA3�-non-Dil and cutaneous MrgprA3�-
Dil neurons as controls; the majority of them might be
nociceptors (Basbaum et al., 2009).

Our results indicated that the itch-specific MrgprA3þ

neurons had significant differences in AP firing pattern than
MrgprA3�-non-Dil and MrgprA3�-Dil neurons. Both
MrgprA3�-non-Dil and MrgprA3�-Dil neurons could generate
multiple APs firing although the number and pattern of APs
firing were diverse for each neuron, but MrgprA3þ neurons
generated non-multiple APs firing in spite of following the
increase of stimulus current in most instances. The APs firing
pattern reflects the physiological properties of a neuron.
Every kind of pattern—generally including spontaneous fir-
ing, regular firing, bursting firing, and tonic firing—indicates
signal conductance of a single neuron (Tang and Wang, 2002).
The APs firing activity in DRG neurons from normal physio-
logical mice differs from mice with the pain or itch model
Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
(Amir et al., 2002; Hachisuka et al., 2010; Schafers et al., 2003).
In the contact hypersensitivity (CHS) model, MrgprA3þ neu-
rons became hyper-excitable and generated multiple spikes
in response to depolarizing current (Qu et al., 2014). MrgprA3
itch neurons showed favorable to generating single AP in
most instances, this firing feature may be an inherent
characteristic of itch neurons.

It seems that a non-multiple firing pattern is the property
of the MrgprA3þ neurons only in normal physiological mice.
The factors affecting the AP firing activity are numerous;
many of the factors belong to ion channels (Waxman and
Zamponi, 2014). For example, the reduction of M current's
density in small-sized DRG neurons contributes to the atopic
APs firing in bone cancer pain in rats (Zheng et al., 2013). The
deceased A-type Kv current increased the AP's firing fre-
quency of the IB4þ DRG neurons (Vydyanathan et al., 2005).
We studied the diversity in APs firing pattern between the
MrgprA3þ and two subsets of MrgprA3� neurons by analyzing
the AP-related parameters, which were recorded by a short
2 ms depolarizing current injection to ensure the intact shape
of the AP. The AP is the basic unit of excitability and
physiological function for sensory neurons. The nociceptive
or pruriceptive substances from endogenous or exogenous
environment activate the nerve endings and generate APs
that are conducted by their axons to the spinal cord. Finally,
after processing of this nociceptive or pruriceptive informa-
tion, a sensation of pain or itch is formed in the brain
(Akiyama et al., 2014; Bautista et al., 2014). Generally, an
intact AP shape consists of a depolarization, repolarization,
hyperpolarization, and afterdepolarization phase (Waddell
and Lawson, 1990). Different ion channels contribute to the
each phase of the AP. The voltage-gated Naþ (Nav) channels
m channels involved in regulation of physiological function
x.doi.org/10.1016/j.brainres.2016.02.014

http://dx.doi.org/10.1016/j.brainres.2016.02.014
http://dx.doi.org/10.1016/j.brainres.2016.02.014
http://dx.doi.org/10.1016/j.brainres.2016.02.014


BRES : 44726

1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

b r a i n r e s e a r c h ] ( ] ] ] ] ) ] ] ] – ] ] ] 9
are mainly involved in the depolarization phase (Blair and
Bean, 2002), and the Kv channels are mainly involved in the
repolarization and hyperpolarization phase (Liu and Bean,
2014; Mitterdorfer and Bean, 2002).

Our study indicated that significant differences exist in the
depolarization phase between the MrgprA3þ and general
MrgprA3�-non-Dil neurons, but no significant difference for
cutaneous sensory MrgprA3�-Dil neurons. Besides, the dura-
tion to 50% decay and duration to 80% decay were also
significantly greater in the MrgprA3þ neurons compared with
two MrgprA3� neurons group. This suggests that the time
interval to evoke the next AP in MrgprA3þ neurons is longer
than in MrgprA3� neurons, which might be the important
reason for non-multiple spikes in MrgprA3þ neurons. Mean-
while, the lower resting membrane potential of MrgprA3þ

neurons indicates their higher current threshold to evoke AP
compared with MrgprA3� neurons.

The Kv channels play an important role in determining
the neuronal firing frequency (Maljevic and Lerche, 2013). In
general, distinct Kv channels are widely expressed in sensory
neurons and Kv currents can be divided mainly into sus-
tained Kv and transient Kv currents (Rasband et al., 2001;
Tsantoulas et al., 2012). It is important that sustained Kv and
transient Kv currents were involved in regulating action
potential and the rest membrane potential (Ritter et al.,
2015; Takeda et al., 2011). In this study, we found that both
the mean current density of the total and the sustained Kv
current were greater in MrgprA3þ neurons than in MrgprA3�-
non-Dil and MrgprA3�-Dil neurons. This might be a reason
that there is the more negative RMP in MrgprA3þ neurons
than in MrgprA3� neurons. This kind of phenomenon has
also been reported in other studies (Ritter et al., 2015; Takeda
et al., 2011). Importantly, pharmacological blocking sustained
Kv channels significantly increased the MrgprA3þ neurons AP
firing activity, indicating that the greater sustained Kv current
decreases MrgprA3þ neurons' excitability.

In summary, our results demonstrated that MrgprA3þ

neurons have lower excitability than the same size
MrgprA3�-non-Dil and MrgprA3�-Dil neurons. MrgprA3þ

neurons exhibit decreased AP firing activity; this may result
from its high density of sustained Kv current. The fewer
spikes in MrgprA3þ neurons help us to further understand
the physiological functions of itch-specific neurons, and may
provide the strategy and method for itch disease therapy.
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4. Experimental procedures

4.1. Animals

The mice were C57BL/6 males or female, 6–8 weeks of age,
weighing 24–32 g. For Mrgpra3GFP-Cre mice, our previous study
indicated that GFP–Cre fusion protein was expressed under the
control of theMrgpra3 promoter. We crossedMrgpra3GFP-Cre mice
with Cre-dependent ROSA26tdTomato reporter mice; Cre-active
neurons were marked by the expression of tdTomato (Han
et al., 2013). The genotype of the offspring was determined by
PCR analysis. Because of the strong fluorescence of the tdTo-
mato protein, MrgprA3þ neurons could be visualized directly
and distinguished easily for electrophysiological recording by
Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
fluorescence microscopy. The mice were housed with a 12 h
light-dark cycle at 22 1C, with free access to water and food. All
experiments were conducted in accordance with the National
Science Foundation of China Guidelines for the Care and Use of
Laboratory Animals.

4.2. Retrograde tracing of cutaneous MrgprA3 negative
neurons

The transgenic Mrgpra3GFP-Cre mice were used to retrograde
tracing of MrgprA3 negative neurons that connect skin. The
mice were anaesthetized with 1% sodium pentobarbital and
the hair in dorsal skin was removed by using animal hair
clipper. To diminish lesion to the skin, an insulin syringe was
used to inject 1,10-Dioctadecyl-3,3,30,30-tetramethylindocarbo-
cyanine perchlorate (Dil, 0.25% in DMSO, Sigma). 50 μl Dil was
subcutaneously injected to the different site of dorsal skin,
about 5 μl Dil for each injection site. After 10 days later, the
operated mice were used for cell culture and DRG section
imaging.

4.3. Fluorescence imaging of the DRG section

The 8-week-old homozygous Mrgpra3GFP-Cre; ROSA26tdTomato

transgenic mice and 6 week-old retrograde transgenic
Mrgpra3GFP-Cre mice were deeply anaesthetized with 1%
sodium pentobarbital. Perfusion with 25 ml cold 0.01 M phos-
phate buffer solution (PBS) was followed by 30 ml cold 4%
paraformaldehyde (PFA) in 0.01 M PBS, PH7.4. The DRG in L4–
L6 spinal level was collected and post-fixed into 4% PFA at
4 1C for 2 h then soaked in 30% sucrose solution in 0.01 M PBS
for 24 h. The DRG tissues were embedded with OCT and
rapidly frozen at �20 1C. The frozen DRG sections were cut
into 10 μm thickness using a cryostat (Leica, GM1950, Ger-
many). All sections were collected in slides and washed three
times for each 5 min with 0.01 M PBS. The prepared DRG
sections were viewed and captured using an Olympus fluor-
escence microscope (Olympus, BX51, Japan). Finally, the
images were acquired and overlapped by Stereo Investigator
software (Stereo Investigator 10, MBF, USA). For the DRG
section of retrograde tracing Mrgpra3GFP-Cre mice, the imaging
was viewed and captured using fluorescence microscopy
(ZEISS, Axio Oberver D1, Germany).

4.4. Cell culture

The 3-4-week-old homozygous Mrgpra3GFP-Cre; ROSA26tdTomato

transgenic mice and the retrograded Mrgpra3GFP-Cre mice were
used for cell culture. DRG from all spinal levels of mice were
collected in cold DH10 medium (90% DMEM/F-12, 10% FBS,
100 U/ml penicillin, 100 ug/ml streptomycin, Gibco) and trea-
ted with enzyme solution (1 mg/ml Collagenase Type I and
5 mg/ml Dispase in HPBS without Ca2þ and Mg2þ, Invitrogen)
at 37 1C for 25 min. The DRG tissue was scattered with a fire-
polished Pasteur pipette. After centrifugation, cells were re-
suspended in warm (37 1C) DH10 with NGF (20 ng/ml), plated
on glass coverslips coated with poly-D-lysine (0.5 mg/ml) and
laminine (10 μg/ml). They were cultured in an incubator (95%
O2 and 5% CO2) at 37 1C. These neurons were used for
electrophysiological recordings within 24 h.
m channels involved in regulation of physiological function
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4.5. Electrophysiological recording

MrgprA3þ and MrgprA3�-non-Dil neurons were identified by
the red fluorescence of tdTomato protein using fluorescence
microscopy (ZEISS, Axio Oberver D1, Germany). MrgprA3�-Dil
neurons were labeled by Dil but without GFP. Cover-slips
were transferred into a chamber with the extracellular solu-
tion. Whole-cell current clamp and voltage-clamp recording
experiments were performed at room temperature (23–25 1C)
using a Multi-clamp 700B amplifier and Digital 1440 with
pClamp10 software (Molecular Devices, USA).

Signals were sampled at 20 kHz and filtered at 2 kHz. The
patch pipettes were pulled from borosilicate glass capillaries
using a P-97 micropipette puller (Sutter Instrument) and had
a resistance of 3–4 MΩ for patch-clamp recordings. The series
resistance was routinely compensated at 60–80%. The resting
membrane potential (RMP) was recorded for each neuron
under the current-clamp mode after stabilization (within
3 min). Neurons whose seal resistance was below 1 GΩ after
breaking the cell membrane and whole-cell recording forma-
tion were excluded from analysis. The liquid junction poten-
tial was 8 mV and corrected. A single intact action potential
was induced by a series of depolarizing current steps, each of
2 ms duration, increments of 50 pA through the recording
electrode. For the APs firing-evoked test, each neuron was
injected in a series of depolarizing current steps, 200 ms
duration, increments of 20 pA. The current threshold was
defined as the minimum injection current required eliciting
an AP. The input resistance was measured from the slope of a
steady-state current–voltage plot in response to a series of
hyperpolarizing current steps from �200 to �50 pA (Qu et al.,
2014). The other AP-related parameters were measured in
Clampfit software. The internal solution contained the fol-
lowing (in mM): KCl 135, MgATP 3, Na2ATP 0.5, CaCl2 1.1,
EGTA 2, Glucose 5, with pH adjusted to 7.38 using KOH, and
osmolarity adjusted to 300 mOsm with sucrose. The external
solution contained the following (in mM): NaCl 140, KCl 4,
CaCl2 2, MgCl2 2, HEPES 10, Glucose 5, with pH adjusted to
7.4 using NaOH, and osmolarity adjusted to 310 mOsm with
sucrose (Liu et al., 2009). The TEA (purchased from Sigma,
USA) was dissolved in distilled water as stock solution and
kept frozen in aliquots. The stock TEA solution was diluted to
25 mM concentration with bath solution before use. Two
independent syringes were used to perfuse TEA solution
and bath solution respectively, the solutions was delivered
to the recording chamber by gravity.

For Kv current recording, the intracellular pipette solution
contained the following (in mM): potassium gluconate 120,
KCl 20, MgCl2 2, EGTA 10, HEPES 10, and MgATP 4 (pH 7.3 with
KOH, 310 mOsm). We minimized the Naþ and Ca2þ compo-
nent in voltage-gated potassium current recording by using
an extracellular solution composed of the following (in mM):
choline chloride 150, KCl 5, CdCl2 1, CaCl2 2, MgCl2 1, HEPES
10, and glucose 10 (pH 7.4 with Tris base, 320 mOsm) (Zhao
et al., 2013). The total Kv current was evoked by a series of
500 ms test pulses ranging from �60 to þ50 mV in 10 mV
steps, preceded by a 1000 ms holding potential in �100 mV.
The command potential protocol was repeated from a hold-
ing potential of �40 mV to isolate sustained Kv current. Total
Kv current subtracts sustained Kv current to yield transient
Please cite this article as: Tang, M., et al., Voltage-gated potassiu
in MrgprA3-specific itch neurons. Brain Research (2016), http://d
Kv current (Fan et al., 2011). For the current traces, the current
density was obtained by dividing the mean current by the cell
capacitance, but for the transient Kv current, the peak current
was normalized. All the chemical reagents used in electro-
physiological recording were purchased from Sigma (USA).

4.6. Data analysis

Electrophysiological data were analyzed and fitted using
Clampfit (Axon Instruments, Foster City, CA) and Origin Pro
8 (Origin Lab, USA) software. All the data were analyzed with
unpaired Student's t-tests or Paired t-test and expressed as
mean7standard errors of the means (S.E.M). The statistical
significance was set at Po0.05.
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