Accepted Manuscript

The antimicrobial peptide hBD2 promotes itch through Toll-like receptor 4 signaling in mice

Jing Feng, PhD, Jialie Luo, PhD, Madison R. Mack, BA, Pu Yang, PhD, Feng Zhang, BS, Guan Wang, BS, Xuan Gong, BS, Tao Cai, MD, PhD, Zhinan Mei, PhD, Brian S. Kim, MD, Shijin Yin, PhD, Hongzhen Hu, PhD

PII: S0091-6749(17)30663-2

DOI: 10.1016/j.jaci.2017.03.035

Reference: YMAI 12759

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 21 November 2016

Revised Date: 10 February 2017

Accepted Date: 14 March 2017

Please cite this article as: Feng J, Luo J, Mack MR, Yang P, Zhang F, Wang G, Gong X, Cai T, Mei Z, Kim BS, Yin S, Hu H, The antimicrobial peptide hBD2 promotes itch through Toll-like receptor 4 signaling in mice, *Journal of Allergy and Clinical Immunology* (2017), doi: 10.1016/j.jaci.2017.03.035.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 TITLE PAGE

- 2 (1) Title
- 3 The antimicrobial peptide hBD2 promotes itch through Toll-like receptor 4 signaling in mice
- 4 (2) name(s) of authors and their highest degree
- 5 Jing Feng, PhD
- 6 Jialie Luo, PhD
- 7 Madison R. Mack, BA
- 8 Pu Yang, PhD
- 9 Feng Zhang, BS
- 10 Guan Wang, BS
- 11 Xuan Gong, BS
- 12 Tao Cai, MD, PhD
- 13 Zhinan Mei, PhD
- 14 Brian S. Kim, MD
- 15 Shijin Yin, PhD
- 16 Hongzhen Hu, PhD
- 17 (3) the institution(s) where work was performed,
- 18 Washington University School of Medicine, Department of Anesthesiology, The Center for the Study of
- 19 Itch, St. Louis, MO, USA
- 20 (4) position, institution, and location of all authors,
- Jing Feng, PhD, Department of Anesthesiology, The Center for the Study of Itch, Washington University
 School of Medicine, St. Louis, MO, USA, jingfeng@wustl.edu
- Jialie Luo, PhD, Department of Anesthesiology, The Center for the Study of Itch, Washington University
 School of Medicine, St. Louis, MO, USA, luojialie@wustl.edu
- 25 Madison R. Mack, BA, Division of Dermatology, Washington University School of Medicine, St. Louis,
- 26 MO, USA, madison.mack@wustl.edu
- 27 Pu Yang, PhD, Department of Anesthesiology, The Center for the Study of Itch, Washington University
- 28 School of Medicine, St. Louis, MO, USA, yangpu150@wustl.edu

- Feng Zhang, BS, College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China,
 1766527255@qq.com
- Guan Wang, BS, College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China,
 2897315873@qq.com
- Xuan Gong, BS, College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China,
 gongxuan1119@foxmail.com
- Tao Cai, MD, PhD, Department of Dermatology, The First Affiliated Hospital of Chongqing Medical
 University, Chongqing, China, caidaodao@hotmail.com
- Zhinan Mei, PhD, College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei, China,
 meizhinan@163.com
- Brian S. Kim, MD, Division of Dermatology, Washington University School of Medicine, St. Louis, MO,
 USA, briankim@wustl.edu
- Shijin Yin, PhD, College of Pharmacy, South-Central University for Nationalities, Wuhan, Hubei,
 China, yinshijinyf@163.com
- Hongzhen Hu, PhD, Department of Anesthesiology, The Center for the Study of Itch, Washington
 University School of Medicine, St. Louis, MO, USA, hongzhen.hu@wustl.edu
- 45
- 46 (5) telephone number, fax number and e-mail address of the corresponding authors
- 47 Hongzhen Hu, PhD
- 48 Telephone number: 314-747-4317
- 49 Fax number: 314-362-8571
- 50 email address: hongzhen.hu@wustl.edu
- 51 Shijin Yin, PhD
- 52 Telephone number: +86-187-0711-5460
- 53 email address: yinshijinyf@163.com
- 54
- 55 Funding:
- 56 Funding: This work was supported partly by grants from the National Institutes of Health, R01GM101218
- and R01DK103901 (to H. H.), The Center for the Study of Itch of Department of Anesthesiology at
- 58 Washington University School of Medicine to H. H, National Natural Science Foundation of China grant
- 59 81373379 to S.Y and Natural Science Fund of Hubei Province 2015CFB491 to S.Y.

ACCEPTED MANUSCRIPT

60	
61	The manuscript
62	1) the paper is not under consideration elsewhere
63	2) none of the paper's contents have been previously published
64	3) all authors have read and approved the manuscript
65	4) authors have no potential conflict of interest to disclose
66	
67	Word Count: 1117
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79 80	
81	
82	
83	
84	
85	

86 The antimicrobial peptide hBD2 promotes itch through Toll-like receptor 4 signaling in mice

87

88 Capsule Summary:

The psoriasis biomarker hBD2 produces a robust scratching response in a TLR4-dependent manner in
mice. TRPV1 is a downstream mediator of hBD2-induced itch. These findings suggest that hBD2 might
act as an endogenous pruritogen in psoriatic itch.

- 92
- 93 Keywords:
- 94 human beta-defensin 2, CCR2, CCR6, TLR4, chronic itch, psoriasis, TRPV1, TRPA1
- 95

96 Abbreviations:

- 97 AMPs: antimicrobial peptides
- 98 $[Ca^{2+}]_i$: intracellular Ca^{2+}
- 99 CCR2: C-C chemokine receptor type 2
- 100 CCR6: C-C chemokine receptor type 6
- 101 hBD2: human beta-defensin 2
- 102 hBD3: human beta-defensin 3
- 103 mBD2: murine beta-defensin 2
- 104 mBD4: murine beta-defensin 4
- 105 NGF: nerve growth factor
- 106 TRPA1: transient receptor potential cation channel subfamily A member 1
- 107 TRPV1: transient receptor potential cation channel subfamily V member 1
- 108
- 109
- 110
- 111
- 112

113 To the Editor:

114 Chronic skin inflammation is considered the most prominent feature for clinical diagnosis of psoriasis, a 115 long-lasting autoimmune disease characterized by patches of red, itchy and scaly skin. Besides skin 116 inflammation, up to 84% of psoriatic patients also suffer from chronic itch, which significantly impairs 117 quality of life¹. Although recent exciting studies have identified a positive correlation between the 118 intensity of psoriatic itch and the expression levels of nerve growth factor (NGF), neuropeptides, and 119 many cytokines², the molecular and cellular mechanisms underlying psoriatic itch are not fully 120 understood.

In response to Th1 or Th17 cytokines, excessive antimicrobial peptides (AMPs) are locally released by 121 rapidly differentiating psoriatic keratinocytes. Among them, human beta-defensin 2 (hBD2) is increased 122 by nearly 400-fold in patients with severe psoriasis and serves as a biomarker for psoriasis activity³. 123 Besides potent antimicrobial activity, hBD2 has diversified roles in regulating adaptive immunity, wound 124 healing, and male fertility⁴. Interestingly, hBD2 also promotes inflammation by recruiting multiple types 125 of immune cells through interacting with both C-C chemokine receptor type 2 (CCR2) and 6 (CCR6) in 126 vitro ^{5,6}. However, the role of hBD2 in itch sensation has not been determined. We therefore investigated 127 whether hBD2 could elicit scratching in wild-type C57BL/6J mice. Strikingly, intradermal injections of 128 129 hBD2 produced a robust scratching response in *wild-type* mice in a dose-dependent manner (Fig 1, A-B). In addition, mBD4, the hBD2 ortholog in mouse, and hBD3 could also elicit scratching in mice although 130 the itch intensity varied among different AMPs (see Fig E1 in this article's Online Repository at 131 www.jacionline.org), which provides a proof of concept that both human and mouse AMPs could serve as 132 133 endogenous pruritogens.

Previous studies have demonstrated that sensory transient receptor potential cation channel subfamily V 134 135 member 1 (TRPV1) and subfamily A member 1 (TRPA1) channels are selectively expressed by a subpopulation of primary afferent nociceptors and serve as molecular integrators for numerous 136 endogenous pruritogens released by skin-resident cells to provoke both histaminergic and non-137 histaminergic itch ⁷. Furthermore, the TRPV1-expressing sensory fibers mediate skin inflammation 138 through facilitating the function of dermal immune cells in a mouse model of psoriasis⁸. To investigate if 139 TRPA1 and/or TRPV1 are also downstream mediators of hBD2-induced itch, we tested if genetic ablation 140 of TRPA1 or TRPV1 function affects hBD2-induced scratching. Strikingly, the number of the hBD2-141 142 induced scratching bouts was markedly reduced in the Trpv1^{-/-} but not the Trpa1^{-/-} mice when compared with wild-type mice (Fig 1, C-D). One possibility for the involvement of TRPV1 in hBD2-induced itch is 143 that hBD2 might promote excitability of cutaneous pruriceptors through directly activating TRPV1. To 144 test this possibility, we examined the effect of hBD2 on DRG neurons isolated from wild-type mice using 145 live-cell Ca^{2+} imaging. Surprisingly, no intracellular Ca^{2+} ($[Ca^{2+}]_i$) response was observed when 10 μ M 146 hBD2 was applied to wild-type DRG neurons (Fig 1, F). Consistent with the Ca^{2+} imaging data in DRG 147 neurons, hBD2 did not activate membrane currents in HEK293 cells transfected with either mouse 148 TRPV1 or human TRPA1 DNA construct (Fig 1, G-H). These results suggest that TRPV1 is a key 149 downstream mediator of hBD2-induced itch but hBD2 does not directly activate TRPV1. This conclusion 150 was further supported by the finding that TRPV1-deficiency abolished $[Ca^{2+}]_i$ response in DRG neurons 151 elicited by applications of hBD2-treated wild-type skin superfusates (see Fig E2 in this article's Online 152 Repository at www.jacionline.org). 153

Since mast cell-derived histamine is one of the best studied pruritogens, especially in allergic itch, and TRPV1 is the major downstream mediator of histaminergic itch, we asked if mast cells are involved in

hBD2-elicited itch by measuring hBD2-induced scratching in mast cell-deficient *Kit^{W-sh}* "sash" mice.

157 Surprisingly, hBD2 evoked comparable scratching responses between the *sash* mice and the *wild-type*

- mice (Fig 1, E), suggesting that mast cells are dispensable and histamine might not play an essential role in hBD2-induced itch, which is consistent with clinical observations that psoriatic itch is refractory to oral
- 160 anti-histamines in more than 80% patients 1,2 .

Since hBD2 receptors CCR2 and CCR6 are abundantly expressed by skin-resident cells ^{5,6}, we tested 161 hBD2-elicited scratching in both ccr2^{-/-} and ccr6^{-/-} mice. To our surprise, hBD2 induced comparable 162 scratching responses among wild-type, $ccr2^{-/-}$ and $ccr6^{-/-}$ mice (Fig 2, A-B), suggesting that neither CCR2 163 nor CCR6 mediates hBD2-induced itch. Since TLR4 mediates mBD2-induced activation of dendritic cells 164 and mBD2 and hBD2 share structural and functional similarities⁹, we tested hBD2-induced scratching in 165 $Tlr4^{-/-}$ mice. Strikingly, the hBD2-induced scratching response was markedly reduced in the $Tlr4^{-/-}$ mice 166 compared with *wild-type* mice (Fig 2, C), suggesting that hBD2-induced itch requires TLR4. To further 167 test if TLR4-expressing skin-resident immune cells are involved in the hBD2-induced itch, we 168 conditionally ablated TLR4 expression in the myeloid cell lineage by generating the LysM^{cre}: Tlr4^{ff} mice 169 as we found that TLR4 was primarily expressed by CD11b⁺/CD11c⁻ dermal macrophages besides a small 170 percentage of dendritic cells and eosinophils (see Fig E3 in this article's Online Repository at 171 172 www.jacionline.org). Indeed, the number of hBD2-induced scratching bouts in the $LysM^{cre}$; $Tlr4^{ff}$ mice was substantially reduced when compared with their wild-type littermates (Fig 2, D). To assess if hBD2 173 directly activates TLR4 in skin-resident cells, we performed live-cell Ca²⁺ imaging on skin-resident cells 174 freshly isolated from mouse ear skin preparations. Consistent with behavioral testing, 10 µM hBD2 175 elicited a robust $[Ca^{2+}]_i$ response in 4.8% of the skin-resident cells examined (Fig 2, *E*) and the $[Ca^{2+}]_i$ 176 response was completely absent from the skin-resident cells isolated from the Tlr4^{-/-} and LysM^{cre}; Tlr4^{f/f} 177 178 mice or Tlr4^{-/-} DRG neurons (Fig 2, F-H). Moreover, hBD2 also activated human skin resident myeloid cells, which was nearly abolished by a selective TLR4 antagonist LPS-RS (see Fig E4 in this article's 179 Online Repository at www.jacionline.org). Surprisingly, the classic TLR4 ligand LPS from either E. coli 180 or S. enterica did not evoke significant scratching. Since it is known that itch is constitutively inhibited by 181 pain, we thus tested the effects of intraplantar injections of hBD2 or LPS on mechanical threshold. Indeed, 182 we found that LPS markedly reduced the mechanical threshold while hBD2 had no effect (see Fig E5 in 183 this article's Online Repository at www.jacionline.org), suggesting that LPS signaling pathway is 184 associated with the pain sensation while the stimulation of TLR4 by hBD2 primarily generate itch 185 sensation without inducing pain responses. Taken together, these results provide strong evidence that 186 187 TLR4 expressed by skin-resident immune cells but not DRG neurons mediates hBD2-induced itch in 188 mice.

In conclusion, here we first report that hBD2, which is markedly up-regulated in differentiated keratinocytes of psoriatic patients, promotes itch sensation by activating TLR4-expressing cutaneous immune cells in mice. Our findings suggest that hBD2 could act as a potent endogenous pruritogen, which expands the roles of the antimicrobial beta-defensin family and may also provide new therapeutic targets against psoriatic itch.

194

195

196 REFERENCES

197

- Yosipovitch G, Goon A, Wee J, Chan YH, Goh CL. The prevalence and clinical characteristics of pruritus among patients with extensive psoriasis. British Journal of Dermatology. 2000 Nov 1;143(5):969-73.
- 201 2. Reich A, Szepietowski JC. Mediators of pruritus in psoriasis. Mediators of inflammation. 2007
 202 Dec 26;2007.
- Jansen PA, Rodijk-Olthuis D, Hollox EJ, Kamsteeg M, Tjabringa GS, de Jongh GJ, et al. β Defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically
 relevant concentrations in lesional skin. PloS one. 2009 Mar 6;4(3):e4725.
- Suarez-Carmona M, Hubert P, Delvenne P, Herfs M. Defensins:"Simple" antimicrobial peptides or broad-spectrum molecules?. Cytokine & growth factor reviews. 2015 Jun 30;26(3):361-70.
- 208 5. Röhrl J, Yang D, Oppenheim JJ, Hehlgans T. Human β-defensin 2 and 3 and their mouse
 209 orthologs induce chemotaxis through interaction with CCR2. The Journal of Immunology. 2010
 210 Jun 15;184(12):6688-94..
- 211 6. Yang D, Chertov OB, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. β-defensins: linking
 212 innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999 Oct
 213 15;286(5439):525-8.
- 214 7. Luo J, Feng J, Liu S, Walters ET, Hu H. Molecular and cellular mechanisms that initiate pain and
 215 itch. Cellular and molecular life sciences. 2015 Sep 1;72(17):3201-23.
- Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A, Alvarez D, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014 Jun 5;510(7503):157-61.
- Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, et al. Toll-like
 receptor 4-dependent activation of dendritic cells by β-defensin 2. Science. 2002 Nov
 1;298(5595):1025-9.
- 222

223

224

225

226

227 228

_ _

229

230

231

232

233

234

235 FIGURE LEGEND

Fig 1 TRPV1 is the downstream mediator of hBD2-induced itch. A, Time course of the scratching 236 237 response induced by vehicle (circle), hBD2 at 2 (square) and 5 (triangle) µg/50 µl recorded for 30 min after intradermal injection. **B**, Bar charts illustrate dose-dependent scratching response produced by 238 intradermal injections of hBD2. n=7 for vehicle, n=6 for 2 μ g and n=9 for 5 μ g hBD2. *p<0.05, 239 ****p<0.0001, ANOVA; C-E, hBD2-induced scratching was reduced in Trpv1^{-/-} (C, n=5) but not Trpa1^{-/-} 240 (**D**, n=4) or mast cell-deficient sash mice (**E**, n=5). n=6 for wild-type mice in all groups. ****p<0.0001, 241 n.s, not significant, Student's t test; F, Representative traces showing $[Ca^{2+}]_i$ responses in individual DRG 242 neurons freshly isolated from wild-type mice in the presence of 10 µM hBD2. 100nM capsaicin and 100 243 mM KCl were used as positive controls. Each colored line represents an individual cell; G-H, 244 Representative I-V curves illustrate that 10 µM hBD2 did not activate HEK293 cells expressing mTRPV1 245 246 (G) or hTRPA1 (H) which were activated by 100 nM capsaicin or $100 \,\mu$ M AITC.

Fig 2 TLR4 but not CCR2 or CCR6 mediates hBD2-induced itch. A-D, hBD2-induced acute itch was 247 248 severely attenuated in $Tlr4^{-/-}$ mice (C, n=7) and LysM-cre; $Tlr4^{f/f}$ conditional knockout mice (D, n=6) but not $ccr2^{-/-}$ (A, n=6) or $ccr6^{-/-}$ (B, n=6) mice, compared with their control groups. **p<0.01, n.s, not 249 significant, Student's t test; E-H, Representative traces showing hBD2-evoked [Ca²⁺]_i response in skin-250 resident cells freshly isolated from ear preparations of *wild-type* (E), *Tlr4^{-/-}* (F), *Tlr4^{CKO}* (G) mice and in 251 acutely dissociated DRG neurons from the $Tlr4^{-/-}$ (H) mice (n=5 independent repeats). 100nM capsaicin, 252 100 mM KCl and 1 µM ionomycin were used as positive controls in relevant experiments. Each colored 253 line represents an individual cell. 254

255	
256	
257	
258	
259	
260	
261	
262	
263	
264	Y.

Ctrank of the second

METHODS

Animals. C57BL/6J, $ccr2^{-/}$, $ccr6^{-/}$, $Tlr4^{-/-}$, $LysM^{cre}$, $Tlr4^{ff}$, and mast cell-deficient Kit^{W-sh} "sash" mice were obtained from Jackson Laboratories (Bar Harbor, ME, USA). $Trpv1^{+/+}$ and congenic $Trpv1^{-/-}$ mice on the C57BL/6J background were obtained from Jackson Laboratory (Bar Harbor, ME, USA). The $Trpa1^{+/+}$ and congenic $Trpa1^{-/-}$ mice on the C57BL/6J background were described previously ^{E1}. All transgenic mice were extensively backcrossed to C57BL/6J for 10 or more generations. Conditional knockout TLR4 in the myeloid cell lineage was generated by mating the LysM-cre mice with $Tlr4^{f/f}$ mice and wild-type littermates were used as the control in the behavior testing. All mice were housed under a 12 h light/dark cycle with food and water provided ad libitum. All behavioral tests were videotaped from a side angle, and behavioral assessments were done by observers blind to the treatments or genotypes of animals. All experiments were performed in accordance with the guidelines of the National Institutes of Health and the International Association for the Study of Pain, and were approved by the Animal Studies Committee at Washington University School of Medicine.

HEK293T cell culture and transfection. HEK293T cells were grown as a monolayer maintained in DMEM (Life Technologies, Carlsbad, CA, USA), supplemented with 10% FBS (Life Technologies, Carlsbad, CA, USA), 100 units mL^{-1} penicillin, and 100 μ g mL^{-1} streptomycin in a humidified incubator at 37°C with 5% CO₂. The cells were transiently transfected with cDNAs for mouse TRPV1 (mTRPV1) or human TRPA1 (hTRPA1) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Following transfection, the cells were maintained in DMEM at 37°C for 24 hours before use.

Fresh isolation of mouse skin-resident cells. Fresh mouse ear skin preparations were cut and separated using forceps and digested in 0.25 mg/ml Liberase TL (Roche, Risch-Rotkreuz, Switzerland) in DMEM media for 90 minutes at 37°C as described ^{E2}. Samples were mashed through 70 μ m cell strainers and washed with DMEM media supplemented 10% FBS (Life Technologies, Carlsbad, CA, USA), 100 units/ml penicillin, and 100 μ g·mL⁻¹ streptomycin. Single-cell suspensions were used for subsequent Ca²⁺ imaging assays.

Isolation and short-term culture of mouse DRG neurons. Mouse spinal columns were removed and placed in ice-cold HBSS; neurons were acutely dissociated and maintained as described ^{E3,4}. In brief, laminectomies were performed and bilateral DRG were dissected out. After removal of connective tissues, DRG were transferred to a 1 mL Ca²⁺/Mg²⁺-free HBSS containing 2 μ L saturated NaHCO₃, 0.35 mg l-cysteine and 20 U papain (Worthington, Lakewood, NJ, USA), and incubated at 37°C for 10 min. The suspension of DRG was centrifuged, the supernatant was removed, 1 mL Ca²⁺/Mg²⁺-free HBSS containing 4 mg collagenase type II and 1.25 mg dispase type II (Worthington) was added and incubated at 37°C for 10 min. After digestion, neurons were pelleted, suspended in neurobasal medium containing 2% B-27 supplement, 1% L-glutamine, 100 U·mL⁻¹ penicillin plus 100 μ g·mL⁻¹ streptomycin, and 50 ng·mL⁻¹ nerve growth factor, plated on a 12 mm coverslip coated with poly-L-lysine (10 μ g·mL⁻¹) and cultured under a humidified atmosphere of 5% CO₂/95% air at 37°C for 18–24 hr before use.

Live-cell Ca²⁺ imaging on freshly isolated skin-resident cells and DRG neurons. Fura-2-based ratiometric measurement of $[Ca^{2+}]_i$ was performed as described previously ^{E5}. Freshly isolated skin-resident cells and cultured DRG neurons were loaded with 4 µM Fura-2 AM (Life Technologies, Carlsbad, CA, USA) in culture medium at 37°C for 60 min. Cells were then washed three times and incubated in HBSS at room temperature for 30 min before use. Fluorescence at 340 and 380 nm excitation wavelengths was recorded on an inverted Nikon Ti-E microscope equipped with 340, 360 and 380 nm excitation filter wheels using NIS-Elements imaging software (Nikon Instruments Inc., Melville, NY, USA). Fura-2 ratios (F340/F380) reflecting changes in intracellular Ca²⁺ upon stimulation were recorded. Values were obtained from 100–250 cells in time-lapse images from each coverslip. Threshold of activation was defined as 3 standard deviations above the average (~ 20% above the baseline).

Whole-cell patch-clamp recordings. Whole-cell patch-clamp recordings were performed using an multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA, USA) at room temperature (22–24 °C) on the stage of an inverted phase-contrast microscope equipped with a filter set for green fluorescence protein visualization (Nikon Instruments Inc., Melville, NY, USA). Pipettes pulled from borosilicate glass (BF 150-86-10; Sutter Instrument Company, Novato, CA, USA) with a Sutter P-97 pipette puller had resistances of 2–4 MΩ when filled with pipette solution containing 140 mM CsCl, 1 mM MgCl₂, 0.5 mM EGTA, and 10 mM HEPES with pH 7.3 and 315 mOsm·L⁻¹. A Ca²⁺-free extracellular solution was used for whole-cell recording to avoid Ca²⁺-dependent desensitization of TRPV1 or TRPA1 containing 140 mM NaCl, 5 mM KCl, 0.5 mM EGTA, 1 mM MgCl₂, 10 mM glucose, and 10 mM HEPES (pH was adjusted to 7.4 with NaOH, and the osmolarity was adjusted to \approx 340 mOsm/l with sucrose). The whole-cell membrane currents were recorded using voltage ramp from –100 to +100 mV for 500 ms at holding potential of 0 mV. Data were acquired using or Clampex 10 (Molecular Devices, Sunnyvale, CA, USA). Currents were filtered at 2 kHz and digitized at 10 kHz.

Acute itch behavior. Mice were shaved on the nape of the neck two days before assay. On the day of experiment, mice were acclimated for 1 hr by placing each of them individually in the recording chamber followed by intradermal injection of hBD2 to the nape of the neck (50μ l per site). Immediately after the injection, mice were videotaped for 30 min without any person in the recording room. After the recording, the videotapes were played back and the number of scratching bouts towards the injection site was counted by an investigator blinded to the treatment.

REFERENCES

- E1. Cruz-Orengo, L., *et al.* Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. *Mol Pain* **4**, 30 (2008).
- E2. Broggi, A., Cigni, C., Zanoni, I. & Granucci, F. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions. *J Vis Exp*, e52589 (2016).
- E3. Yin, S., Luo, J., Qian, A., Yu, W. & Hu, H. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels. *Br J Pharmacol* **171**, 1510-1520 (2014).
- E4. Yin, S., *et al.* Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity. *J Clin Invest* **123**, 3941-3951 (2013).
- E5. Liu, S., *et al.* Eact, a small molecule activator of TMEM16A, activates TRPV1 and elicits painand itch-related behaviours. *Br J Pharmacol* **173**, 1208-1218 (2016).

SUPPLEMENTARY FIGURE LEGEND

Fig E1 Both hBD3 and mBD4 produce scratching responses when injected intradermally. **A**, intradermal injections of hBD3 (5 μ g/50 ul) elicited a scratching response in *wild-type* mice. n=7 for each group. **p*<0.05, Student's t test; **B**, intradermal injection of mBD4 (5 μ g/50 ul) induced a scratching response in *wild-type* mice. n=6 for each group. **p*<0.01, Student's t test.

Fig E2 hBD2-treated skin superfusates evoked a robust $[Ca^{2+}]_i$ response in *wild-typet* but not $TrpvI^{-/-}$ DRG neurons. A, Representative traces showing that vehicle-treated skin superfusate did not evoke a $[Ca^{2+}]_i$ response in the *wild-type* DRG neurons (n=5 independent repeats); B, Representative traces showing that 10 µM hBD2-treated skin superfusate evoke a $[Ca^{2+}]_i$ response in the *wild-type* DRG neurons (n=5 independent repeats); C, The $[Ca^{2+}]_i$ response evoked by hBD2-treated skin superfusate was not present in the *TrpvI^{-/-* DRG neurons (n=5 independent repeats).

Fig E3 TLR4 is expressed primarily by dermal macrophages. **A**, Representative FACS plots of TLR4positive cells in the skin and fluorescence minus one (FMO) negative control. TLR4⁺ cells are ~45% CD45⁺; **B**, Macrophages were defined as I-A^{b-lo/-}F4/80⁺ CD11b⁺ CD11c⁻, dendritic cells were defined as I-A^{b-hi}F4/80^{+/-} CD11b^{+/-} CD11c⁺, mast cells were defined as c-Kit⁺ FcERIa/IgE⁺, eosinophils were defined as Siglec-F⁺, neutrophils were defined as CD11b⁺ Ly6-G⁺ I-A^{b-} F4/80⁻; **C**, Bar chart showing the percentages of cells found in each of the specified gates. Data are representative of three independent experiments.

Fig E4 hBD2 stimulates human skin resident myeloid derived cells via TLR4. **A**, Representative traces showing that 10 μ M hBD2-evoked a [Ca²⁺]_i response in myeloid derived cells freshly isolated from human forearm skin (n=5 independent repeats); **B**, The selective TLR4 antagonist LPS-RS (2 μ g/ml) nearly abolished the hBD2-induced [Ca²⁺]_i responses in the human skin-resident myeloid derived cells (n=5 independent repeats); C, Bar charts illustrated that percentage of human skin-resident myeloid derived cells responded to hBD2, hBD2 plus LPS-RS. ****p<0.0001, Student's t test.

Fig E5 Injection of LPS, a TLR4 ligand, evoked acute pain but not itch sensation. **A-B**, Intradermal injections of LPS (5 μ g and 50 μ g) from *E. coli* and *S. enterica* into *wild-type* mice didn't caused significantly scratching responses compared with vehicle control. n=6 for each group. n.s, not significant, ANOVA; **C**, Time course of changes in Paw withdrawal thresholds in response to von Frey filaments before and at several time points after intraplantar injections of 5 μ g hBD2 or LPS from *E. coli* and *S. enterica*. n=6 for each group. ***p<0.001, ***p<0.0001, n.s, not significant, ANOVA.