

Research Articles: Cellular/Molecular

FGF13 is required for histamine-induced itch sensation by interaction with Na_V1.7

https://doi.org/10.1523/JNEUROSCI.0599-20.2020

Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.0599-20.2020

Received: 12 March 2020 Revised: 20 October 2020 Accepted: 21 October 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 the authors

	_	
	2	intera
ىب	3	Abbrev
<u>d</u>	4	Fei Do
CC	5	Zhong ^{1,}
SN	6	¹ Institu
JU	7	for Exc
Νŝ	8	Science
2	9	² State H
D D	10	Science
)te	11	Science
	12	³ Resea
Ö	13	Brain-Iı
	14	Brain S
	15	⁴ Shang
C C	16	Hospita
Ö	17	⁵ Schoo
Π	18	China
leu	19	
Ζ	20	* Co-co
	21	Send c

FGF13 is required for histamine-induced itch sensation by interaction with Na_v1.7

- 3 Abbreviated title: The role of FGF13 in itch
- Fei Dong^{1,3,4}, Haixiang Shi^{2,5}, Liu Yang¹, Huaqing Xue², Manyi Wei², Yan-Qing
 Zhong^{1,4}, Lan Bao^{2,5*}, and Xu Zhang^{1,3,4,5*}
- ¹ Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center
 for Excellence in Brain Science and Intelligence Technology, Chinese Academy of
- 8 Sciences, Shanghai 200031, China
- 9 ² State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell
- 10 Science / Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of
- 11 Sciences, Shanghai 200031, China
- ³ Research Unit of Pain, Chinese Academy of Medical Sciences; Institute of
- 13 Brain-Intelligence Science and Technology, Zhangjiang Lab; Shanghai Center for
- 14 Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
- ⁴ Shanghai Clinical Research Center, Chinese Academy of Sciences/Xu-Hui Central
- 16 Hospital, Shanghai 200031, China
- ⁵ School of Life Science and Technology, ShanghaiTech University, Shanghai 201210,

*Co-corresponding authors

Send correspondence to: Xu Zhang, Institute of Neuroscience and State Key
 Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and

	23
	24
	25
ipt	26
SCL	27
<u>S</u>	28
n	29
ื่อไ	30
Σ	31
σ	32
Ð	33
D	34
ccep	35
U U	36
\triangleleft	37
C.	38
SC	39
	40
С Ф	41
Ž	42
	43

Intelligence Technology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, P. R. China

Tel: 86-21-54921726, Fax: 86-21-54921762, E-mail: <u>xu.zhang@ion.ac.cn</u>

26 Lan Bao, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry

- and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University
- of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031,

29 China

30 Tel: 86-21-54921369, E-mail: <u>baolan@sibcb.ac.cn</u>

32 Author contributions:

33 F.D., L.B., and X.Z. designed research. F.D., H-X.S., L.Y., H-Q.X., M-Y.W., and

34 Y-Q.Z. performed research. F.D. analyzed data. F.D., L.B., and X.Z. wrote the paper.

- Number of pages: 47
- 37 Number of figures: 7
- 38 Number of words in abstract: 250
- 39 Number of words in introduction: 646
- 40 Number of words in discussion: 1365
- 41 Conflict of interest: The authors declare no competing financial interests.
- 43 Acknowledgments: We thank Dr. Yan-Gang Sun and Dr. Qingjian Han for help with
- 44 scratching behavior test. This work was supported by the National Natural Science

2

Foundation of China (31700901, 31671058), the Strategic Priority Research Program 45 (B) of Chinese Academy of Sciences (XDB39000000), the Key Research Program of 46 Frontier Sciences (QYZDY-SSW-SMC007), Chinese Academy of Sciences, the 47 48 Science and Technology Commission of Shanghai Municipality, China 49 (18JC1420301), and the CAMS Innovation Fund for Medical Sciences 50 (2019-I2M-5-082). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. 51

52 Abstract

Itch can be induced by activation of small-diameter dorsal root ganglion (DRG) 53 54 neurons which express abundant intracellular fibroblast growth factor 13 (FGF13). 55 Although FGF13 is revealed to be essential for heat nociception, its role in mediating 56 itch remains to be investigated. Here, we reported that loss of FGF13 in mouse DRG neurons impaired the histamine-induced scratching behavior. Calcium imaging 57 showed that the percentage of histamine-responsive DRG neurons was largely 58 decreased in FGF13-deficient mice, and consistently, electrophysiological recording 59 60 exhibited that histamine failed to evoke action potential firing in most DRG neurons from these mice. Given that the reduced histamine-evoked neuronal response was 61 62 caused by knockdown of FGF13 but not by FGF13A deficiency, FGF13B was supposed to mediate this process. Furthermore, overexpression of histamine type 1 63 receptor H1R, but not H2R, H3R nor H4R, increased the percentage of 64 histamine-responsive DRG neurons, and the scratching behavior in FGF13-deficient 65 mice was highly reduced by selective activation of H1R, suggesting that H1R is 66 mainly required for FGF13-mediated neuronal response and scratching behavior 67 induced by histamine. However, overexpression of H1R failed to rescue the 68 69 histamine-evoked neuronal response in FGF13-deficient mice. Histamine enhanced the FGF13 interaction with $Na_V 1.7$. Disruption of this interaction by a 70 membrane-permeable competitive peptide, GST-Flag-Nav1.7CT-TAT, reduced the 71 DRG 72 percentage of histamine-responsive neurons, and impaired the histamine-induced scratching, indicating that the FGF13/Nav1.7 interaction is a key 73

molecular determinant in the histamine-induced itch sensation. Therefore, our study
reveals a novel role of FGF13 in mediating itch sensation via the interaction of
Nav1.7 in peripheral nervous system.

77

78 Significance Statement

Scratching induced by itch brings serious tissue damage in chronic itchy diseases and 79 targeting itch-sensing molecules is crucial for its therapeutic intervention. Here, we 80 reveal that FGF13 is required for the neuronal excitation and scratching behavior 81 induced by histamine. We further provide the evidence that the histamine-evoked 82 83 neuronal response is mainly mediated by histamine type 1 receptor H1R, and is 84 largely attenuated in FGF13-deficent mice. Importantly, we identify that histamine 85 enhances the FGF13/Nav1.7 interaction, and disruption of this interaction reduces histamine-evoked neuronal excitation and highly impairs histamine-induced 86 scratching behavior. Additionally, we also find that FGF13 is involved in 87 5-HT-induced scratching 1-fluoro-2,4-dinitrobenzene 88 behavior and hapten (DNFB)-induced chronic itch. 89

90 Introduction

Fibroblast growth factor 13 (FGF13) belongs to the intracellular non-secretory form 91 92 of FGFs. Different from other secretory FGFs that principally bind their receptors to 93 elicit signal transduction, FGF13 is not released from cells due to lacking the signal 94 sequence. FGF13 is expressed abundantly from development to adulthood in the neurons of dorsal root ganglion (DRG) (Hartung et al., 1997; Li et al., 2002). 95 Immunostaining showed that FGF13 was present in more than 80% of small-diameter 96 DRG neurons (Yang et al., 2017). Activation of small DRG neurons was found to 97 generate multiple types of somatosensation, including pain and itch. Noxious stimuli 98 (e.g., thermal, mechanical and chemical) produce pain by activating cutaneous A δ and 99 100 C nociceptors, the peripheral terminals of small DRG neurons. Understanding of the FGF13 function in somatosensation came at first by our previous study using 101 conditional FGF13-deficient mice in small DRG neurons, and these mice lost heat 102 nociception but exhibited normal mechanical nociceptive responses in both the von 103 Frey and Randall-Selitto (tail clip) tests (Yang et al., 2017). Previous studies reported 104 that intracellular FGFs are essential regulators of neuronal excitability, and the best 105 characterized role for these FGFs is the interaction with voltage-gated sodium (Na_V) 106 107 channels to modulate the gating property and current density of sodium channels (Liu et al., 2001, 2003; Laezza et al., 2007, 2009; Lou et al., 2003; Boshch et al., 2015; Yan 108 109 et al., 2014; Yang et al., 2017). Our previous study also revealed that FGF13 increased 110 $Na_{v}1.7$ sodium currents and maintained the membrane localization of $Na_{v}1.7$ during 111 noxious heat stimulation, enabling the sustained firing of action potentials (Yang et al., 112 2017).

113	In addition to pain, itch is also an aversive somatosensation to elicit desire and
114	reflex to scratch. Ablation of the Mas-related G protein-coupled receptor A3
115	(MrgprA3)-positive DRG neurons reduced the scratching evoked by multiple
116	pruritgens (Han et al., 2013). Neurons marked by natriuretic polypeptide b (Nppb) are
117	also required for itch responses (Mishra et al., 2013). Our recent high-coverage
118	single-cell RNA sequencing data reveal that itch-sensing neurons expressed Nppb or
119	MrgprA3 primarily belong to small DRG neurons that also contain transient receptor
120	potential cation channel V1 (TRPV1) (Li et al., 2016). Selectively ablating TRPV1 ⁺
121	fibers from the DRG or in TRPV1 knockout mice caused substantial deficits in
122	scratching behaviors in response to pruritogens (Imamachi et al., 2009). Various
123	peripheral itch-inducing stimuli generated within or administered to the skin are able
124	to trigger itch, one of them being histamine. Histamine is the most studied pruritogen
125	that serves as a classical inducer of itch and involved in the itch-associated with
126	urticaria, ocular and nasal allergic reactions (Baroody et al., 2008; Hide et al., 1993;
127	Leonardi 2002). Studies reveal that histamine may play a key role in the pathogenesis
128	of atopic dermatitis (Ikoma et al., 2003). Serotonin (5-hydroxytryptamine; 5-HT) and
129	an anti-malaria drug chloroquine (CQ) have also been shown to cause strong itch
130	(Dong et al., 2018; Liu et al., 2009). Both histamine and 5-HT are linked to allergic
131	contact dermatitis, a common chronic skin disease that characterized by intense itch
132	(Ikoma et al., 2003; Rasil et al., 2013; Soga et al., 2007). Since previous studies have
133	shown that small DRG neurons are vital for itch detection, it is of significant interest

to also explore the role of FGF13 in the itch sensation.

In the present study, we found that the depletion of FGF13 in Na_V1.8-positive DRG 135 136 neurons impaired the histamine-induced scratching. The histamine-evoked neuronal 137 excitation was mainly mediated by histamine type 1 receptor H1R and was largely 138 attenuated in FGF13-deficient neurons. Importantly, histamine enhanced the interaction between FGF13 and Nav1.7, and disruption of this interaction reduced 139 histamine-evoked neuronal excitation and impaired histamine-induced scratching. We 140 also found that loss of FGF13 impaired scratching induced by 5-HT, as well as in 141 hapten 1-fluoro-2,4-dinitrobenzene (DNFB)-induced chronic itch. Our study identifies 142 FGF13 as a critical factor essential for regulating itch sensation in peripheral nervous 143 144 system.

145

146 Materials and methods

147 Animals

All experiments were performed using protocols approved by the Committee of Use of Laboratory Animals and Common Facility, Institute of Neuroscience, Chinese Academy of Sciences. Male mice (2~4 month) were raised together with littermates and housed in pathogen-free environment with a 12-h light/12-h dark cycle at 22~26 o°C and an ad libitum food and water supply.

The generation of conditional knockout mice lacking FGF13 specifically in small DRG neurons is described in a previous report (Yang et al., 2017). The Fgf13-loxP mice were obtained by flanking its exons 2 and 3 which encode the FGF13 core

region with loxP sequences. The Fgf13 conditional knockout mice was constructed by 156 crossing Fgf13-loxP mice with bacterial artificial chromosome (BAC) transgenic mice 157 158 expressing Cre recombinase controlled by promoter elements of the Na_V1.8 gene 159 (SNS-Cre), which is mainly expressed in small DRG neurons. This gene deletion 160 mediated by SNS-Cre was started at the perinatal stage, thereby minimizing the risk of developmental defects. The knockout mice were viable and fertile, and did not exhibit 161 visible abnormalities. Our experiments were performed with Fgf13 knockout mice 162 $(Fgf13^{-/Y})$ and control Fgf13-loxP mice $(Fgf13^{F/Y})$. 163

164

165 Itch behavioral test

Prior to experiments, $Fgf13^{F/Y}$ and $Fgf13^{-/Y}$ mice were given 30 min to acclimate to 166 the test chamber before treatment. Mice were then briefly removed from the chamber 167 and given intradermal injection at the back neck with pruritic compound at a volume 168 of 50 µl. Hindlimb scratching behavior directed towards the injection site was 169 observed for 30 min at 5-min intervals. A bout of scratching was defined as a lifting of 170 the hind limb directed at the area of the injection site and then a replacing of the limb 171 back to the floor, regardless of how many scratching strokes taken place between 172 173 those two movements. Scratching behavior was qualified by counting the number of scratching bouts over 30-min observation period. For intradermal injection, the 174 following drugs was dissolved in sterile saline and administered at a volume of 50 µl: 175 histamine (500 μ g/50 μ l), 5-HT (10 μ g/50 μ l), CQ (200 μ g/50 μ l), or agonists for 176 177 histamine receptors: H1R agonist HTMT (50 µg/50 µl), H2R agonist dimaprit (50

 $\mu g/50 \mu l$), H3R agonist immethridine (160 $\mu g/50 \mu l$) or H3R antagonist H4R agonist clobenpropit (30 $\mu g/50 \mu l$). To test the role of FGF13/Na_V1.7 complex in the histamine-induced itch, GST-Flag-Na_V1.7CT-TAT (Na_V1.7-TAT) was used for the disruption of FGF13/Na_V1.7 interaction. The same volume with 60 mg/kg Na_V1.7CT-TAT, 60 mg/kg GST-Flag-TAT or vehicle was injected intraperitoneally (i.p.) into C57BL/6J mice each hour for four times, and followed by recording the histamine-induced scratching behavior.

185

186 Nocifensive behavior

Capsaicin-induced flinching behavior was performed by intraplantar injection of $10 \ \mu$ l 187 188 fresh-made 0.1% capsaicin solution (0.5% capsaicin stock solution: Tween-80: saline = 2: 1: 7) under the dorsal surface of the hind paw. Allyl isothiocyanate 189 (AITC)-induced flinching behavior was carried out by intraplantar injection of 10 μ l 190 fresh-made 0.2% AITC solution (10% AITC stock solution: DMSO: saline = 2: 10: 191 88). The licking and/or lifting of the injected paw was deemed as an indicator of the 192 flinching behavior. The recording was observed for 5 min with capsaicin and for 30 193 min with AITC immediately after the injection. 194

195

196 Chronic itch

DNFB is widely used to induce allergic dermatitis in mouse models (Jin et al., 2009).
The allergic contact dermatitis model of chronic itch was applying DNFB onto the
back skin. In brief, DNFB dissolved in acetone and olive oil mixture (4:1) was used

for sensitization and challenge. The surface of abdomen and the nape of neck was shaved one day before the sensitization. The sensitization was applied onto the abdomen area. Mice were intradermally injected with 50 μ l of 0.5% DNFB, and followed by topical application with 100 μ l of 0.5% DNFB. The challenge started 5 days later. Mice were painted with 50 μ l of 0.2% DNFB on the shaved neck area every other day for a week. Spontaneous scratching behaviors were videotaped for 1 h every 24 h after each challenge.

207

208 Plasmids

The expression constructs for H1R, H2R and H4R were purchased (Origene), and H3R (NM_133849.3) was cloned from cDNA of mouse brain tissue and then cloned into the vector pCMV-mCherry. For the shRNA knockdown experiment, the sequences of shFGF13, shFGF13A and shNC were designed as previously described (Wu QF et al., 2012). For the adeno-associated virus 9 (AAV9) constructs, these shRNAs were inserted into pAKD.CMV.bGlobin.eGFP.H1.shRNA vector (Genetic Reprogramming Platform, Institute of Neuroscience, CAS).

216

217 Cell culture and transfection

HEK293 cells were cultured in MEM supplemented with 10% fetal bovine serum and
antibiotics. The cells were transiently transfected with 1-2 µg plasmids per 35-mm
dish using Lipofectamine 2000 reagent (Invitrogen) and used for further experiments
after 24 h.

222	DRGs from 2~4-month-old mice were carefully isolated and digested in
223	oxygenated DMEM containing collagenase (0.4 mg/ml), trypsin (1 mg/ml) and DNase
224	(0.1 mg/ml) for 30 min at 37 °C. For experiments without further treatment,
225	dissociated cells were plated directly onto the poly-D-lysine-coated glass coverslips
226	after gentle trituration in DMEM/F12 (1:1) medium supplemented with 100 U/ml
227	penicillin, 0.1 mg/ml streptomycin and 10% fetal bovine serum. For the H1R, H2R,
228	H3R or H4R overexpression experiment, 5 μ g plasmids containing H1R were added
229	directly to the suspension of neurons after isolation in Nucleofector buffer (0.1 ml)
230	and the mixture was electroporated in an Amaxa Nucleofector II using program O-003.
231	Subsequently, neurons were washed by oxygenated DMEM/F12 medium and then
232	plated onto coated coverslips. Electrophysiological recordings were performed 24 h
233	after electro-transfection. For the shRNA knockdown experiment, dissociated cells
234	plated onto coated coverslips were infected by adding 1 μ l AAV-based shRNA (titer:
235	$\sim 10^8$ vg/ml) into the culture medium. The following experiments were performed
236	after 7-d incubation.

237

238 Co-immunoprecipitation, immunoblotting and immunocytochemistry

Tissue samples or cultured neurons were homogenized in RIPA buffer (150 mM NaCl, 30 mM HEPES, 10 mM NaF, 1% Triton X-100 and 0.01% SDS) with protease inhibitors (1 mM PMSF, 10 mg/ml aprotinin, 1 mg/ml pepstatin and 1 mg/ml leupeptin). For co-immunoprecipitation (co-IP), the tissue or cell supernatant was incubated with FGF13 antibody (Santa Cruz) overnight at 4 °C. The

244	immunoprecipitates and $5\sim10$ % total lysates were analyzed by immunoblotting. For
245	immunoblotting, the samples were separated by SDS-PAGE, and then transferred to
246	nitroceellulose membrane. Primary antibody was applied overnight at 4 °C and
247	secondary antibody was applied for 1 h at room temperature. The specific protein
248	bands were visualized with chemiluminescence. The primary antibodies included that
249	against Nav1.7 (1:400, MABN41, Millipore), actin (1:6000, MAB1501, Chemicon),
250	H1R (1:1000, self-made), FGF13 (1:500, sc-16811, Santa Cruz), FGF13 (1:1000,
251	HPA002809, Sigma). The specificity of self-made H1R antibody was conducted by
252	preabsorption of antisera with 10 μ M antigen peptide into working antibody solution
253	for 24 h. The immunoreactive bands were quantified from at least 3 independent
254	experiments using Image J 1.47 software (NIH). The interaction between $\mathrm{Na}_\mathrm{V}1.7$ and
255	FGF13 before and after histamine stimulation was calculated using
256	co-immunoprecipitated Nav1.7 compared to immunoprecipitated FGF13.

For immunocytochemistry, one coverslip was taken from the transfected HEK293 cells used for calcium imaging and fixed with 4 % paraformaldehyde for 20 min at 4 °C. The coverslips were mounted and scanned using a Leica TCS SP8 confocal microscope (Leica).

261

262 Electrophysiological recording

Patch pipette with 3-5 MΩ resistance was filled with solution containing 140 mM KCl,
0.5 mM EGTA, 5 mM HEPES and 3 mM Mg-ATP, adjusted to pH 7.3 with KOH. The
extracellular solution (ECS) contained 140 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 2

mM MgCl₂, 10 mM HEPES, adjusted to pH 7.3 with NaOH. Whole-cell current-clamp recording was conducted with an AxonPatch-700B amplifier in a voltage-clamp mode with a holding potential of -70 mV and then performed after switching to a current-clamp mode. Only the cells with stable resting potential below -40 mV were used in this study. The data were filtered at 5 kHz and digitized at 20 kHz. The recording chamber was continuously perfused with fresh extracellular solution at a flow rate of 2 ml/min.

Action potentials (APs) induced by histamine were recorded in a current-clamp 273 mode at room temperature ($22 \sim 25$ °C). The neuron that could be evoked AP firing by 274 histamine was considered as a histamine-responding neuron. To investigate FGF13 in 275 276 histamine-evoked neuronal excitatory, 1 mM histamine was applied for 10 s onto small DRG neurons cultured from $Fgf13^{F/Y}$ or $Fgf13^{-/Y}$ mice after 30-s perfusion with 277 ECS. The neuron was considered as a histamine-responding neuron if at least 3 APs 278 could be evoked by 10-s histamine application. The same protocol was performed in 279 neurons from C57BL/6J mice incubated with vehicle, 1 μ M TTX and 10 nM 280 Protoxin-II for at least 30 min. The mCherry-expressing neuron was given 10-s 281 puffing with 1 mM histamine to detect the AP firing after a 60-s perfusion by 282 283 extracellular solution. The drug treatment group was given 10-s 1 mM histamine after 60-s extracellular solution perfusion and another 10-s 1 mM histamine after 3-min 1 284 285 µM TTX or 10 nM Protoxin-II solution perfusion. The control group for drug treatment used 3-min extracellular solution to replace the drug treatment. The spike 286 number evoked by histamine was compared to which after drug treatment. 287

JNeurosci Accepted Manuscript

288

289 Calcium imaging

290 For calcium imaging, cultured neurons or HEK293 cells were loaded for at least 30 min in the dark with 10 µM Fura-2AM at 4 °C in ECS. Cells were imaged at 340 nM 291 292 and 380 nM, and the ratio of fluorescent intensity at 340 nM versus 380 nM was calculated using MetaMorph software. Cells were identified as neurons by eliciting 293 depolarization with 40 mM KCl at the end of each experiment. Cells were deemed to 294 be sensitive to an agonist if the average ratio during 10-s histamine application was 15% 295 above baseline. The percentage of agonist-responding neurons was calculated from 296 cells responded to KCl. Cells were transfected with the plasmid expressing shFGF13 297 298 or shFGF13A and GFP, which could separately indicate the expression of shRNA. GFP has a major excitation peak at a wavelength of 395 nm and a minor one at 475 299 nm. Its emission peak is at 509 nm. The calcium dye Fura-2 has quite similar 300 excitation peaks at 335-345 and 380-390 nm and emission peak at 475-535 nm. The 301 overlapped GFP caused a high background for Fura-2 signal. To avoid the 302 interference of GFP signal, we have normalized Fura-2 ratio to baseline ratio 303 $[F_{340}/F_{380} = (Ratio)/(Ratio_{t=0})]$ as a previous study (Wilson et al., 2011). To disrupt 304 305 endogenous FGF13/Na_V1.7 interaction, we incubated DRG neurons with 1 μ M GST-Flag-Nav1.7CT-TAT or control 1 µM GST-Flag-TAT for 30 min before 306 307 Fura-2AM loading.

308

309 Experimental design and statistical analysis

Data are presented as mean \pm SEM. Sample number (n) values are indicated in figure 310 legend or result section. Two groups were compared by a two-tailed, unpaired 311 312 Student's t test. Comparison between two groups with multiple times was performed 313 by a two-way ANOVA with Bonferroni's post hoc test. Multiple groups were 314 compared by a one-way ANOVA with Tukey's post hoc test. Statistical analysis was performed using PRISM (GraphPad Software). The difference was considered 315 significant at p < 0.05. All statistical analyses were two-tailed, 95% confidential 316 interval (CI). 317

318

319 Results

320 Loss of FGF13 in DRG neurons impairs histamine-induced scratching behavior

To identify the involvement of FGF13 in itch sensation, we initially examined the 321 change of scratching behavior in mice, whose FGF13 gene (Fgf13) was deleted in 322 small DRG neurons by crossing homozygous Fgf13-flox mice with transgenic mice 323 expressing SNS-Cre according to previous studies (Agarwal et al., 2004; Yang et al., 324 2017). Scratching behavior were assessed by intradermally injecting pruritogen into 325 right side of the nape, and the number of bouts in right hind paw scratching directed 326 327 toward the injection site was analyzed and binned every 5 min. This experiment was carried out with control Fgfl3-flox mice ($Fgfl3^{F/Y}$) and Fgfl3 knockout mice 328 (SNS-Cre/Fgf13^{F/Y}; Fgf13^{-/Y}). In response to intradermal injection of 500 µg 329 histamine in 50 µl, control $Fgfl3^{F/Y}$ mice were observed with several bouts in first 5 330 331 min and then reached a scratching peak within $10 \sim 15$ min (Figure 1A). Strikingly, the

332	itch behavior induced by histamine was highly decreased in $Fgf13^{-/Y}$ mice. Compared
333	to $Fgf13^{F/Y}$ mice with high scratching response, $Fgf13^{-/Y}$ mice displayed a limited
334	number of scratches throughout 30 min of recording after intradermal injection of 500
335	μ g/50 μ l histamine (Figure 1A; F _(1, 285) = 97.280, P < 0.0001). Since the mice injected
336	with vehicle in both $Fgf13^{F/Y}(0.6 \pm 0.3, n = 7)$ and $Fgf13^{-/Y}$ mice $(0.8 \pm 0.5, n = 6)$
337	barely scratched (t = 0.481, df = 11, P = 0.6400) for 30 min, the delayed onset of
338	histamine-induced scratch behavior in $Fgf13^{-/Y}$ mice observed between 20-30 min
339	post-injection might be the late response due to the off-target effect of histamine that
340	activates mast cells or immune cells to elicit itch independent of direct activation to
341	the receptor in neurons (Thurmond et al., 2008). It should be also noted that $Fgf13^{-/Y}$
342	mice exhibited the profound scratching deficit in total number of scratching bouts
343	induced by histamine for 30 min (Figure 1A; t =9.079, df = 35, $P < 0.0001$). The total
344	number of scratching bouts induced by 500 µg histamine was 60.1 ± 5.1 in Fgf13 ^{F/Y}
345	mice (n = 28) and 10.7 \pm 2.0 in <i>Fgf13</i> ^{-/Y} mice (n = 31) (Figure 1A). These data
346	indicate that the itch-induced scratching behavior is impaired robustly in
347	FGF13-deficient mice.

348

FGF13 deficiency in DRG neurons displays the deficit of neuronal excitation induced by histamine

Since itch sensation results from a direct activation of DRG neurons by pruritogens, the behavioral deficit in $Fgf13^{-/Y}$ mice would be attributed to a loss of neuronal responsiveness in the DRG. To determine whether loss of FGF13 altered neuronal

354	response, we first compared the change of histamine-evoked Ca ²⁺ signals indicated by
355	F_{340}/F_{380} in cultured DRG neurons between knockout $Fgf13^{-/Y}$ mice and control
356	$Fgf13^{F/Y}$ littermates. Calcium imaging showed that the percentage of
357	histamine-responding DRG neurons was largely decreased in $Fgf13^{-/Y}$ mice (t = 5.695,
358	df = 7, P = 0.0007). In <i>Fgf13</i> ^{F/Y} mice, 1 mM histamine increased the cellular Ca^{2+}
359	concentration in $6.2 \pm 1.0\%$ neurons (n = 8, 1~2 mice each time, 850 cells) (Figure
360	1B). However, only $0.9 \pm 0.5\%$ neurons (n = 8, 1~2 mice each time, 707 cells)
361	responded to 1 mM histamine in $Fgf13^{-/Y}$ mice (Figure 1B). The magnitude of Ca ²⁺
362	signals was not changed (t = 0.592, df = 47, P = 0.5566) in the responsive neurons of
363	<i>Fgf13</i> ^{-/Y} mice (70.0 ± 8.0%, n = 6 cells), as compared with that of <i>Fgf13</i> ^{F/Y} mice (61.8
364	\pm 5.0%, n = 43 cells) (Figure 1B). Thus, the histamine-induced response requires the
365	intact of FGF13 in DRG neurons.

To further probe the role of FGF13 in the pruritogen-induced neuronal excitability, 366 we next performed the patch-clamp recording of AP firing in cultured DRG neurons 367 from $Fgf13^{F/Y}$ and $Fgf13^{-/Y}$ mice. Consistent with the result from Ca²⁺ imaging, the 368 percentage of histamine-excited neurons was also dramatically reduced (t = 12.517, df 369 = 11, P < 0.0001). In *Fgf13*^{F/Y} mice, $13.7 \pm 1.0\%$ small DRG neurons (n = 7 mice, 53 370 371 cells) fired APs in response to 1 mM histamine (Figure 1C). In contrast, all recorded small DRG neurons (n = 6 mice, 43 cells) cultured from $Fgf13^{-/Y}$ mice failed to 372 produce APs by histamine treatment (Figure 1C). The percentage of 373 histamine-responding neurons detected by electrophysiological recording in Fgf13^{F/Y} 374 mice was higher than that detected by calcium imaging. This difference mainly 375

resulted from the detected pool of neurons because small DRG neurons in patch-clamp recording has a much narrower range in cell sizes compared to all neurons of various sizes using calcium imaging. Taken together, these data indicate that FGF13 is required for histamine-evoked DRG neuronal response.

380

381 FGF13B mediates the histamine-induced neuronal response

FGF13 has two major alternative splicing isoforms, FGF13A and FGF13B, in the 382 mouse. FGF13A contains the nucleus localization signal, while FGF13B is distributed 383 in the cytoplasm and contributes to dynamic signaling processes (Wu et al., 2012). To 384 explore which isoform was involved in the histamine-induced itch, we performed 385 386 calcium imaging on cultured DRG neurons transfected with AAV-expressing shFGF13 (targeting at FGF13 mRNA), shFGF13A (targeting at FGF13A mRNA) or 387 shNC (negative control) for 7 d. Immunoblotting detected that knockdown of FGF13 388 but not FGF13A largely reduced the expression of FGF13B ($F_{(1.067, 7.468)} = 33.00$, P = 389 0.0005; Figure 2A). The level of FGF13B was decreased to $34.6 \pm 2.9\%$ by shFGF13 390 (n = 8). The level of FGF13A was also significantly reduced by knockdown of FGF13 391 or FGF13A ($F_{(1.341.4.024)}$ = 9.812, P = 0.0319) in cultured DRG neurons. Cultured DRG 392 393 neurons transfected with shFGF13 showed a decrease in the percentage of histamine-responding neurons (t = 5.169, df = 3, P = 0.0140). In the neurons 394 transfected with shFGF13A, 1 mM histamine increased the cellular Ca²⁺ 395 concentration in 5.4 \pm 0.1% cells (n = 4 from 1~2 mice each, 277 cells), while only 396 $1.3 \pm 0.8\%$ neurons (n = 4 from 1~2 mice each, 185 cells) transfected with shFGF13 397

responded to histamine (Figure 2B). Additionally, we excluded the possibility that 398 AAV-mediated shRNA treatment may affect neurons in a sicken way. The amplitude 399 400 above baseline of KCl-responding neurons treated with shRNA (205.4 \pm 6.2%) was similar to that from $Fgf13^{F/Y}$ (260.8 ± 18.4%) or $Fgf13^{-/Y}$ (275.0 ± 23.1%) mice. 401 402 Meanwhile, the percentage of histamine-responding neurons treated with shFGF13A $(5.4 \pm 0.1\%;$ Figure 2B) was similar to that from *Fgf13*^{F/Y} mice $(6.2 \pm 1.0\%;$ Figure 403 1B). Therefore, this result suggests that FGF13B is the isoform for FGF13 to mediate 404 the histamine-induced neuronal response. 405

406

407 H1R-mediated itch is impaired in FGF13-deficient mice

408 Histamine receptors are required for the signaling in sensory neurons being activated directly by histamine. We firstly screened receptors of histamine in DRG neurons. 409 Four known subtypes of histamine receptor including H1R, H2R, H3R and H4R, 410 which belong to the G-protein-coupled-receptor (GPCR) superfamily, were identified 411 previously. Using our recent data based on high-coverage single-cell RNA sequencing, 412 were highly expressed in Nppb-expressing C2 413 H1R and H2R and MrgprA3-expressing C4 DRG neurons, and H3R was mainly expressed in C3, 414 415 marked by the tyrosine hydroxylase (TH), DRG neurons (Figure 3A). Our previous study also reported the expression of itch-related molecules in C2 and C4 DRG 416 417 neurons, suggesting an important role of these neurons in the itch (Yang et al., 2017). Activation of H1R and H4R as well as H3R inhibition on sensory neurons could 418 increase the calcium influx in a subpopulation of these neurons (Rossbach et al., 419

420	2011). Other studies revealed that H4R but not H2R and H3R causes itch in mice in
421	addition to H1R (Bell et al., 2004; Shim et al., 2008). To clarify the role of different
422	receptors in response to histamine in DRG neurons, we performed whole-cell
423	patch-clamp recording on cultured DRG neurons transfected with H1R-mCherry,
424	H2R-mCherry, H3R-mCherry or H4R-mCherry. The $84.7 \pm 8.2\%$ of neurons
425	expressing H1R-mCherry (n = 6 from $1\sim2$ mice each, 36 cells) could be induced APs
426	by 1 mM histamine, while the neurons expressing either H2R-mCherry ($8.3 \pm 8.3\%$, n
427	= 4 from $1\sim2$ mice each, 14 cells), H3R-mCherry ($11.4 \pm 5.9\%$, n = 3 from $1\sim2$ mice
428	each, 23 cells) or H4R-mCherry ($6.3 \pm 6.3\%$, n = 4 from 1~2 mice each, 19 cells) in
429	response to 1 mM histamine displayed the equivalent percentage of neurons
430	expressing control vector ($4.8 \pm 4.8\%$, n = 3 from 1~2 mice each, 17 cells) (Figure 3B;
431	$F_{(4,15)} = 26.00$, P < 0.0001). We performed corresponding agonists in DRG neurons
432	expressing H2R-mCherry, H3R-mCherry or H4R-mCherry. Over 60% neurons
433	expressing these receptors could reduce the resting membrane potential or induce APs
434	(Figure 3B), indicating that H2R, H3R and H4R constructs are successfully expressed.
435	Thus, H1R is the main functional receptor mediating histamine-induced response in
436	DRG neurons.

We further explored whether H1R was involved in the impairment of histamine-induced scratching behavior in $Fgf13^{-/Y}$ mice. The behavioral test showed that 1 mM HTMT, a H1R agonist, induced 23.6 ± 5.0 scratching bouts within 30 min in $Fgf13^{F/Y}$ mice (n = 8), while total bouts induced by HTMT dropped to 2.3 ±1.3 in $Fgf13^{-/Y}$ mice (n = 7) (Figure 3C; t = 3.902, df = 13, P = 0.0020). Intradermal injection

442	of 4 mM dimaprit (H2R agonist), 10 mM immethridine (a potent H3R agonist) or 1.2
443	mM clobenpropit (H3R antagonist, H4R agonist) were also observed in $Fgf13^{-/Y}$ mice.
444	H2R agonist dimaprit barely induced scratching behavior. In contrast to H1R agonist
445	HTMT, the scratching behavior did not display differently between $Fgfl3^{F/Y}$ and
446	$Fgf13^{-/Y}$ mice induced by immethridine (Figure 3C; $Fgf13^{F/Y}$: 9.4 ± 2.3, n = 8;
447	<i>Fgf13</i> ^{-/Y} : 10 ± 3.1 , n = 7, t = 0.164, df = 13, P = 0.8700) and clobenpropit (Figure 3C;
448	$Fgf13^{F/Y}$: 37.0 ± 7.5, n = 9; $Fgf13^{-/Y}$: 27.2 ± 4.7, n = 9, t = 1.028, df = 16, P = 0.3200).
449	Moreover, whole-cell patch-clamp recording detected that the cultured
450	FGF13-deficient DRG neurons expressing H1R-mCherry almost lost ability ($t = 4.477$,
451	df = 5, P = 0.0065) to respond to 1 mM histamine (79.2 \pm 12.5 % for <i>Fgf13</i> ^{F/Y} mice, n
452	= 4 from 3 mice each, 24 cells and 7.4 \pm 7.4 % for <i>Fgf13</i> ^{-/Y} mice, n = 4 from 3 mice
453	each, 17 cells; Figure 3D). After co-expressing H1R-mCherry and
454	FGF13B-IRES-GFP, $42.9 \pm 7.1\%$ FGF13-deficient DRG neurons could be evoked AP
455	firing by 1 mM histamine (Figure 3D; $n = 3$ from 2 mice each, 21 cells; $t = 3.451$, df =
456	4, $P = 0.0300$). However, due to the transfection efficiency of FGF13B in DRG
457	neurons, the percentage of histamine-responding neurons was not rescued to the level
458	in DRG neurons only expressing H1R-mCherry from $Fgf13^{F/Y}$ mice. Taken together,
459	these data suggest that loss of FGF13 impairs H1R-mediated itch induced by
460	histamine.

461

462 FGF13 does not physically and functionally affect H1R

463 Since H1R-mediated itch was impaired in $Fgfl3^{-/Y}$ mice, we wondered whether

464	FGF13 functioned through its interaction with H1R to affect the histamine-evoked
465	neuronal excitation. Co-IP was performed to evaluate a possibility of the interaction
466	between FGF13 and H1R in the DRG. In fact, FGF13 interacted with $\mathrm{Na_v1.7}$ as
467	previous report (Yang et al., 2017) but barely with H1R in DRGs (Figure 4A).
468	Immunoblotting of cultured DRG neurons detected that in $Fgf13^{-/Y}$ mice, the level of
469	H1R was not altered (t = 0.657, df = 4, P = 0.5473) and the amount of Na _V 1.7 was
470	also unchanged (Figure 4B) as our previous report (Yang et al., 2017). To detect
471	whether FGF13 functionally coupled to H1R, we examined the change of cellular
472	Ca^{2+} signals evoked by 1 mM histamine in HEK293 cells co-expressing
473	FGF13B-IRES-GFP and H1R-mCherry. In comparison with the control cells only
474	expressing H1R, the magnitude of histamine-evoked Ca ²⁺ signals was not
475	significantly changed (t = 3.060 , df = 3 , P = 0.0550) in cells co-expressing H1R with
476	FGF13B (H1R and vector: 2.5 ± 0.2 , n = 4, 220 cells; H1R and FGF13B: 2.8 ± 0.1 , n
477	= 4, 178 cells) (Figure 4C). Therefore, FGF13 does not directly regulate H1R.

478

479 FGF13/Na_V1.7 acts as the key mediator for histamine-induced itch

Our previous study reveals that FGF13 increases the current density of $Na_V 1.7$ and maintains the excitability of small DRG neurons (Yang et al., 2017). Patients carrying a variant in *SCN9A* gene encoding $Na_V 1.7$ experience paroxysmal itch (Devigili et al., 2014). Previous reports provide evidences in mice showing that blocking $Na_V 1.7$ by selective antagonists inhibits the histamine-induced scratching behavior, as well as evoked neuronal excitability (Chandra et al., 2020; Graceffa et al., 2017; Kornecook

486	et al., 2017; Zhang et al., 2019; Marx et al., 2016). First, we confirmed the role of
487	$Na_V 1.7$ in the histamine signaling in DRG neurons. Compared to the control (16.2 ±
488	3.2%, n = 3, 31 cells), small DRG neurons incubated with 1 μ M tetrodotoxin (TTX)
489	$(0 \pm 0\%, n = 3, 29 \text{ cells})$ for at least 30 min failed to evoke AP firing (Figure 5A; t =
490	5.024, df = 4, $P = 0.0070$), and similar reduction was also found in neurons incubated
491	with 10 nM Protoxin-II ($2.6 \pm 2.6\%$, n = 3, 32 cells), a selective Na _V 1.7 blocker, for at
492	least 30 min (Figure 5A; $t = 3.312$, $df = 4$, $P = 0.0300$). Then, we detected whether
493	$Na_V 1.7$ was also required for H1R-mediated neuronal activation evoked by histamine.
494	Typically, whole-cell patch-clamp recording showed that the histamine-induced APs
495	in neurons expressing H1R-mCherry was dramatically reduced after applying either 1
496	μ M TTX (30.4 ± 8.8%, n = 17 cells; t = 7.951, df = 16, P < 0.0001, n = 17) or 10 nM
497	Protoxin-II (40.8 \pm 12.0%, n = 12 cells; t = 4.913, df = 11, P = 0.0005, n = 12), but
498	was not significantly changed after perfusing ECS (127.9 \pm 29.5%, n = 7 cells; t =
499	0.9471, df = 7, P = 0.3751) (Figure 5B-5D). Thus, $Na_V 1.7$ is also critical for
500	H1R-mediated histamine signaling.
501	Then, we detected whether the FGF13/Nav1.7 complex was involved in

Then, we detected whether the FGF13/Na_V1.7 complex was involved in histamine-induced neuronal response. Cultured DRG neurons were incubated with 1 mM histamine for 5 min and performed for the detection of interaction between FGF13 and Na_V1.7. Co-IP showed that the association between FGF13 and Na_V1.7 was significantly enhanced (t = 3.075, df = 5, P = 0.0276) by 1 mM histamine treatment for 5 min (Figure 6A). Moreover, we explored the functional contribution of FGF13/Na_V1.7 interaction to the histamine-evoked neuronal response. The calcium

508	imaging in neurons treated with $Na_V 1.7 CT$ -TAT showed that the percentage of
509	histamine-responding neurons was largely reduced (t = 5.992 , df = 3 , P = 0.0093)
510	after a 30-min incubation with 1 μM Na_v1.7CT-TAT (3.8 \pm 1.2%, n = 4 from 1~2
511	mice each, 428 cells), compared with control GST-Flag-TAT ($8.3 \pm 1.6\%$, n = 4 from
512	$1\sim2$ mice each, 509 cells) (Figure 6B). The magnitude of Ca ²⁺ signals was not
513	changed (t = 0.324, df = 6, P = 0.7600) in the responsive neurons from two groups
514	(Figure 6B). To test whether the peptide could directly affect $Na_V 1.7$ function, we
515	recorded the sodium currents evoked by a step depolarization (-90 mV to 50 mV in 10
516	mV increments) in HEK293 cells transfected with Na _V 1.7. The I/V curves did not
517	display significant difference in $Na_V 1.7$ currents of HEK293 cells treated with
518	GST-Flag-TAT and Na _V 1.7CT-TAT ($F_{(1,4)} = 0.0138$, P = 0.9121; Figure 6C). Thus, the
519	$FGF13/Na_V1.7$ interaction is the necessity of mediating neuronal excitation in
520	response to histamine.

521 Finally, we evaluated the effect of disrupting interaction between FGF13 and $Na_V 1.7$ on the histamine-induced scratching behavior according to our previous report 522 (Yang et al., 2017). The mice were i.p. injected with the dose of 60 mg/kg at 1-h 523 intervals for 4 times and examined scratching behavior in response to histamine at 524 525 5~6 h after the last injection (Figure 6D). Mice treated with Nav1.7CT-TAT displayed very limited (F $_{(2,35)}$ = 11.790, P = 0.0057) scratching number after histamine injection 526 (Figure 6E). The total number of scratching bouts induced by 500 μ g histamine was 527 64.0 ± 11.2 in mice (n = 3) injected with GST-Flag-TAT and 8.0 ± 2.5 in mice (n = 3) 528 injected with Na_V1.7CT-TAT (Figure 6E; t = 4.862, df = 4, P = 0.0083). These data 529

indicate that FGF13 is indispensable for itch-induced scratching behavior byinteraction with Na_v1.7.

532

533 FGF13 is involved in 5-HT or CQ-induced scratching behavior, and chronic itch

534 We further explored whether FGF13 was involved in the scratching behavior induced by other pruritogens including 5-HT and CQ, a MrgprA3 agonist. In response to 535 intradermal injection of 10 µg 5-HT in 50 µl, control $Fgf13^{F/Y}$ mice reached a 536 scratching peak at 10 min (Figure 7A). At the same time, *Fgf13^{-/Y}* mice did not exhibit 537 the scratching behavior induced by 5-HT before 10 min and only showed a delayed 538 onset of scratch between 15-20 min, which could be the off-target effect to activate 539 540 glia cells or mast cells (De-Miguel et al., 2015), similar to histamine. Compared to $Fgf13^{F/Y}$ mice with high scratching response, $Fgf13^{-/Y}$ mice displayed a limited 541 number of scratches throughout 30 min after intradermal injection of 10 μ g/50 μ l 542 5-HT (Figure 7A; F $_{(1,61)}$ = 28.410, P < 0.0001). The total number of scratching bouts 543 induced by 5-HT was also highly decreased in *Fgf13*^{-/Y} mice (20.4 \pm 5.4, n = 32) 544 compared to $Fgf13^{F/Y}$ mice (75.9 ± 9.0, n = 31) (Figure 7A; t = 5.327, df = 61, P < 545 0.0001). Meanwhile, in response to intradermal injection of 200 µg CQ in 50 µl, 546 $Fgf13^{-/Y}$ mice showed a decreased scratching throughout 30 min compared to 547 $Fgf13^{F/Y}$ mice (Figure 7B; F (1, 55) = 4.287, P = 0.0431). The total number of 548 scratching bouts induced by CQ was reduced in $Fgf13^{-/Y}$ mice (71.4 ± 11.0, n = 30) 549 compared to $Fgf13^{F/Y}$ mice (104.2 ± 11.4, n = 27) (Figure 7B; t = 2.069, df = 55, P = 550 0.0430). Furthermore, calcium imaging showed that the percentage of 551

552	5-HT-responding DRG neurons was significantly decreased in Fgf13-'Y mice (Figure
553	7C; 5-HT: 7.1 \pm 1.0% for <i>Fgf13</i> ^{F/Y} and 2.9 \pm 1.0% for <i>Fgf13</i> ^{-/Y} , t = 13.500, df = 3, P =
554	0.0009). However, the percentage of CQ-responding neurons was not significantly
555	reduced (Figure 7C; 21.1 ± 4.1% for $Fgf13^{F/Y}$ and 16.2 ± 3.2% for $Fgf13^{-/Y}$, t = 1.777,
556	df = 7, $P = 0.1200$). Both the behavioral and calcium imaging results suggest that the
557	defect in 5-HT response is larger than that of CQ in $Fgf13^{-/Y}$ mice. Thus, the
558	scratching behavior induced by 5-HT and other pruritogens could also be impaired by
559	FGF13-deficiency.

We also generated the DNFB-induced allergic contact dermatitis to examine the 560 role of FGF13 in the chronic itch. After sensitization on the abdomen area by 50 μ l 561 562 intradermal injection of 0.5% DNFB followed immediately by 100 µl painting for 5 days, 50 μ l of 0.2% DNFB was painted on the nape of neck area for challenge and the 563 scratching bouts 24 h after each challenge was recorded for 1 h at day 6, 8, 10 and 12. 564 $Fgf13^{F/Y}$ mice displayed a robust and persistent scratching behavior which prolonged 565 at day 12, while $Fgf13^{-/Y}$ mice sustained at a significantly lower level of scratching 566 behavior (Figure 7D; F $_{(1, 13)}$ = 14.80, P = 0.0020), suggesting FGF13 as an important 567 mediator in chronic itch. 568

Additionally, we detected the algogen-induced behavior in FGF13-deficient mice. The transient receptor potential vanilloid-1 (TRPV1) has been shown to be involved in histamine-induced scratching by activation of H1R (Shim et al., 2007). Upon 10 μ l hindpaw injection of 0.1% capsaicin, a TRPV1 agonist, the number of flinches in *Fgf13^{-/Y}* mice (5.3 ± 2.0, n = 3) was significantly decreased compared to that in

574	$Fgf13^{F/Y}$ mice (29.4 ± 3.3, n = 5) (Figure 7E; t = 5.212, df = 6, P = 0.0020). Moreover,
575	the transient receptor potential ankyrin 1 (TRPA1) was indicated as an essential
576	component of MrgprA3-mediated signaling (Wilson et al., 2011). In response to 10 μl
577	hindpaw injection of 2% AITC, a TRPA1 agonist, the flinches were not significantly
578	altered between $Fgf13^{F/Y}$ (35.7 ± 10.4, n = 6) and $Fgf13^{-/Y}$ mice (23.7 ± 5.1, n = 6)
579	(Figure 7F; $t = 1.034$, $df = 10$, $P = 0.3260$). Thus, TRPV1-mediated behavior is
580	largely defective in FGF13-deficient mice.

581

582 Discussion

The present study demonstrates that FGF13 is required in histamine-induced itch 583 584 sensation via interacting with Nav1.7. Under normal condition, histamine activates small DRG neurons that express H1R. In the presence of FGF13, activation of H1R 585 leads to subsequent activation of Nav1.7, AP firing and scratching behavior. Loss of 586 FGF13 causes a reduction in neuronal excitation and scratching behavior evoked by 587 histamine. Consistently, disrupting the FGF13/Nav1.7 interaction reduces the 588 histamine-evoked neuronal excitation and, most importantly, impairs scratching 589 behavior. Moreover, loss of FGF13 also significantly impairs 5-HT-induced 590 591 scratching behavior and DNFB-induced chronic itch. These findings indicate a new role of FGF13 in the itch sensation, which may provide a fresh therapeutic target for 592 intervention of pathological itch. 593

594

595 FGF13 is vital for itch sensation

596	FGF13 is widely distributed in the developing brain and has been implicated in
597	neurobiological diseases. In human beings, Fgf13 mutation could cause X-linked
598	intelligence disability and genetic epilepsy and febrile seizures plus (GEFS^+)
599	(Puranam et al., 2015; Skare et al., 2018). Mice lacking Fgf13 have defects in
600	neuronal migration, and exhibit weakened learning and memory (Wu et al., 2012).
601	FGF13 also maintains high-level expression in the DRG from development to
602	adulthood. Both pain and itch are initiated and modulated by small DRG neurons
603	(Ikoma et al., 2006). The majority of itch-sensitive neurons marked by Nppb or
604	MrgprA3 belong to C2 and C4 types of small DRG neurons. We previously reported
605	that mice lacking FGF13 in small DRG neurons lost responsiveness to noxious heat.
606	Heat nociception elicits a quick withdrawal behavior to avoid noxious heat stimuli,
607	while the response of itch is to scratch. Since immunostaining reveals that FGF13 is
608	present in more than 80% of small DRG neurons (Yang et al., 2017) including C2 and
609	C4 types, it is not surprising to find that FGF13 is also responsible for itch sensation.
610	The present study showed that itch behavior induced by histamine was strongly
611	reduced in mice lacking FGF13 in small DRG neurons. Histamine excites sensory
612	neurons via its receptors and eventually evoke AP firing. Consistently, calcium
613	imaging showed that the percentage of histamine-responding neurons were largely
614	reduced in cultured small DRG neurons from $Fgf13^{-/Y}$ mice. Moreover, the percentage
615	of neurons with AP firing evoked by histamine was also extremely low in $Fgfl3^{-Y}$
616	mice compared with $Fgf13^{F/Y}$ mice. These evidences all support that FGF13 is a key
617	molecule involved in the histamine-evoked itch sensation.

618	Further detection of itch behavior induced by 5-HT also displayed an impairment of
619	scratching behavior in FGF13-deficient mice, suggesting that FGF13 mediates both
620	histamine-dependent and histamine-independent itch. However, the defective level of
621	itch induced by various pruritogens is not equal in $Fgfl3^{-/Y}$ mice showing almost
622	absent scratching in response to histamine and 5-HT but only reduced scratching
623	bouts induced by CQ. This phenomenon is also observed in DRG neurons, in which
624	the percentage of histamine or 5-HT-responding DRG neurons was largely decreased
625	but the percentage of CQ-responding DRG neurons was not significantly reduced in
626	Fgf13 ^{-/Y} mice. In humans, both histamine and 5-HT are linked to itch in allergic
627	contact dermatitis. Substantially, $Fgf13^{-/Y}$ mice exhibited a great decline of scratching
628	behavior in DNFB-induced allergic contact dermatitis. This evidence suggests that
629	FGF13 is involved in chronic itch participated by histamine and 5-HT.

630

631 FGF13 interacts with Nav1.7 to mediate itch sensation

Intradermal injection of histamine notably induces vigorous scratching behavior in 632 both humans and mice. Generally, histamine firstly initiates the intracellular signaling 633 by combining with its receptors, subsequently activates voltage-gated ion channels, 634 635 and eventually induces AP firing and itch-evoked scratching behavior. H1R, one of four known histamine receptors, has been studied most extensively in the context of 636 histamine-induced itch. Our finding also supports that H1R is the main receptor 637 mediating histamine signaling in itch sensation. First of all, analysis of our single-cell 638 639 RNA sequencing showed that unlike H4R, three types of histamine receptors, H1R,

640	H2R and H3R were detected in DRG neurons. Then, we transfected all four types of
641	histamine receptors into DRG neurons respectively, and only found that the
642	percentage of histamine-responding neurons was significantly increased after the H1R
643	transfection. Moreover, total scratching bouts induced by intradermal injection of
644	dimaprit (H2R agonist), immethridine (standard H3R agonist) or clobenpropit (H3R
645	antagonist and H4R agonist) were not significantly changed between $Fgf13^{F/Y}$ and
646	$Fgf13^{-/Y}$ mice, excluding the involvement of these three receptors in FGF13-mediated
647	pathway of itch behavior. However, the interaction between FGF13 and H1R was not
648	detected in the co-IP experiment, and FGF13 did not promote Ca ²⁺ signals in HEK293
649	cells co-expressing H1R. Therefore, the defected neuronal response and itch behavior
650	induced by histamine in FGF13-deficient mice are not due to loss of FGF13 effect on
651	H1R function.

Nav channels are critical for the generation and propagation of APs. Of the nine 652 α -subunits of Na_V channels, Na_V1.6, Na_V1.7, Na_V1.8 and Na_V1.9 are expressed in 653 654 DRG neurons and contribute to somatosensory transmission. Intracellular, non-secretory forms of FGFs are essential regulators of neuronal excitability and 655 interact with the cytoplasmic carboxy terminal tail of α -subunits. Na_V1.7 has been 656 657 strongly implicated in human pain sensation, based on the studies with human gain-of-function and loss-of function mutations (Cox et al., 2006; Dib-Hajj et al., 658 2005; Emery et al., 2015; Fertleman et al., 2006; Yang et al., 2004). Recent report 659 showed that gain-of-function mutation of Nav1.7 caused paroxysmal itch in patients 660 661 (Devigili et al., 2014). In mice, selective $Na_V 1.7$ inhibitors suppressed itch behaviors

induced by histamine (Chandra et al., 2020; Graceffa et al., 2017). Nav1.7 knockout 662 mice in which the functional expression of $Na_V 1.7$ being prevented in DRG and 663 664 trigeminal ganglia neurons exhibited strong scratching reduction towards many 665 pruritogens, such as C48/80, 5-HT, CQ, endothelin and histamine (Kühn et al., 2020). 666 Particularly, a tamoxifen-inducible Nav1.7 knockout mouse allowing adult-onset deletion of SCN9A-encoding Nav1.7 also appeared lack of scratching behavior 667 induced by histamine (Flispach et al., 2018). Our patch-clamp recording also detected 668 that the percentage of AP firing was significantly reduced by blocking Nav1.7 in DRG 669 670 neurons expressing H1R, further supporting that Nav1.7 acts on the neural circuit of itch sensation. 671

672 Our previous results showed that FGF13 was co-expressed with the majority of neurons expressing Nav1.7 and exhibited strong interaction with Nav1.7. Moreover, 673 FGF13 could also regulate the function of Na_V1.7 by increasing its current density 674 (Yang et al., 2017). These evidences imply a functional role of Na_V1.7 in 675 676 FGF13-mediated itch sensation. Our biochemical results showed that the FGF13/Nav1.7 interaction level was enhanced by 5-min histamine treatment in 677 cultured DRG neurons. After disrupting the interaction between FGF13 and Na_v1.7, 678 the Ca^{2+} signals evoked by histamine were significantly attenuated in DRG neurons. 679 Consistently, the scratching behavior induced by histamine was also impaired greatly 680 681 by the disruption of FGF13/Nav1.7 interaction. However, unlike the response to heat, the plasma-membrane level of $Na_V 1.7$ in FGF13-deficient DRG neurons induced by 682 shFGF13 was not significantly reduced after histamine treatment (data not shown), 683

which suggests a different molecular mechanism underlying the role of FGF13 in regulating $Na_V 1.7$ function in the histamine signaling. Therefore, FGF13 interacting with $Na_V 1.7$ is proved as the key process mediating the histamine-evoked neuronal signaling and, more importantly, the histamine-induced itch behavior.

688 Previous studies report that TRPV1 is a primary transducer of histamine-evoked itch (Imamachi et al., 2009; Shim et al., 2007). Our previous study using the 689 patch-clamp recording showed that the amplitude of capsaicin-induced currents was 690 not reduced but significantly increased in FGF13-deficient DRG neurons (Yang et al., 691 2017), implying the intact of TRPV1 function. However, in the present study, the paw 692 licking response induced by capsaicin was largely reduced in Fgf13-/Y mice, 693 694 suggestting the defect of TRPV1 downstream effectors in DRG neurons. Previous study showed that after selectively inhibiting $Na_V 1.7$ with sulfonamides, the total 695 amount of licking time was significantly reduced following intraplantar injection of 696 capsaicin (Graceffa et al., 2017). Therefore, the defect of capsaicin-induced behavior 697 in $Fgfl3^{-/Y}$ mice may also result from the reduction of Na_V1.7, a key downstream 698 effector of TRPV1 activation. Moreover, the flinching behavior induced by AITC was 699 not significantly changed in Fgf13-'Y mice, suggesting the presence of 700 701 TRPA1-mediated pathway. Previous studies report that TRPA1 is required for 5-HT-induced itch (Morita et al., 2015). Differences in the defects of scratching 702 behavior induced by histamine, 5-HT and CQ in FGF13-deficient mice suggest that 703 FGF13 may involve differentially in the signaling processes. 704

705

706 References

- Agarwal N, Offermanns S, Kuner R (2004) Conditional gene deletion in primary
 nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis
 38:122-129.
- Akiyama T, Carstens MI, Carstens E (2010) Enhanced scratching evoked by PAR-2
 agnoist and 5-HT but not histamine in a mouse model of chronic dry skin
 itch. Pain 151:378-383.
- Baroody FM, Foster KA, Markaryan A, deTineo M, Naclerio RM. (2008) Nasal
 ocular reflexes and eye symptoms in patients with allergic rhinitis. Ann
 Allergy Asthma Im 100:194-199.
- Bell JK, McQueen DS, Rees JL (2004) Involvement of histamine H4 and H1
 receptors in scratching induced by histamine receptor agonists in BalbC
 mice. Brit J Pharmacol 142:374-380.
- Bosch MK, Carrasquillo Y, Ransdell JL, Kanakamedala A, Ornitz DM, Nerbonne JM
 (2015) Intracellular FGF14 (iFGF14) is required for spontaneous and
 evoked firing in cerebellar Purkinje neurons and for motor coordination and
 balance. J Neurosci 35:6752-6769.
- Chandra S, Wang Z, Tao X, Chen O, Luo X, Ji RR, Bortsov AV (2020)
 Computer-aided discovery of a new Na_V1.7 inhibitor for treatment of pain
 and itch. Anesthesiology 133:611-627.
- Clough GF, Boutsiouki P, Church MK (2001) Comparison of the effects oflevocetirizine and loratadine on histamine-induced wheal, flare and itch in

728	human skin. Allergy 56: 985-988.
729	Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G,
730	Jafri H, Mannan J, Raashid Y (2006) An SCN9A channelpathy causes
731	congenital inability to experience pain. Nature 444:894-898.
732	De-Miguel FF, Leon-Pinzon C, Noguez P, Mendez B (2015) Serotonin release from
733	the neuronal cell body and its long-lasting effects on the nervous system.
734	Philos Trans R Soc Lond B Biol Sci 370:20140196.
735	Denham KJ, Boutsiouki P, Clough GF, Church MK (2003) Comparison of the effects
736	of desloratadine and levocetirizine on histamine-induced wheal, flare and
737	itch in human skin. Inflamm Res 52:424-427.
738	Devigili G, Eleopra R, Pierro T, Lombardi R, Rinaldo S, Lettieri C, Faber CG,
739	Merkies ISJ, Waxman SG, Lauria G (2014) Paroxysmal itch caused by
740	gain-of-function Na _V 1.7 mutation. Pain 155:1702-1707.
741	Dib-Hajj SD, Rush AM, Cummins TR, Hisama FM, Novella S, Tyrrell L, Marshall L,
742	Waxman SG (2005) Gain-of-function mutation in $Na_V 1.7$ in familial
743	erythromelalgia induces bursting of sensory neurons. Brain 128:1847-1854.
744	Dong X, Dong X (2018) Peripheral and central mechanisms of itch. Neuron
745	98:482-294.
746	Emery EC, Habib AM, Cox JJ, Nocholas AK, Gribble FM, Woods CG, Reimann F

JNeurosci Accepted Manuscript

747

748

749

Neurosci 35:7674-7681.

(2015) Novel SCN9A mutations underlying extreme pain phenotypes:

unexpected eletrophysiological and clinical phenotype correlations. J

750	Fertleman CR, Bak	er MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman
751	J, Klugba	uer N, Wood JN, Gardiner RM, Rees M (2006) SCN9A mutations
752	in parox	ysmal extreme pain disorder: allelic variants underlie distinct
753	channel o	efects and phenotypes. Neuron 52:767-774.
754	Flinspach M, Xu	Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA,
755	Freedman	n J, Eckert WA, Zhou M, Bonesteel R, Pennington MW, Eddinger
756	KA, Yak	h TL, Hunter M, Swanson RV, Wickenden AD (2017) Insensitivity
757	to pain	nduced by a potent selective closed-state Nav1.7 inhibitor. Sci
758	Rep 7:39	662.
759	Graceffa RF, Boe	tio AA, Able J, Altmann S, Berry LM, Boezio C, Butler JR,
760	Chu-Moy	er M, Cooke M, DiMauro EF, Dineen TA, Bojic EF, Foti RS,
761	Fremeau	RT, Guzman-Perez A, Gao H, Gunaydin H, Huang H, Huang L,
762	Ilch C, et	al (2017) Sulfonamides as selective $Na_V 1.7$ inhibitors: optimizing
763	potency,	pharmacokinetics, and metabolic properties to obtain atropisomeric
764	quinoline	ne (AM-0466) that affords robust in vivo activity. J Med Chem
765	60:5990-	6017.
766	Han L, Ma C, Liu	Q, Weng HJ, Cui Y, Tang Z, Kim Y, Nie H, Qu L, Patel KN, Li Z,
767	McNeil	B, He S, Guan Y, Xiao B, LaMotte RH, Dong X (2013) A
768	subpopul	ation of nociceptors specifically linked to itch. Nat Neurosci 16:
769	174.	
770	Hartung H, Feldma	n B, Lovec H, Coulier F, Birnbaum D, Goldfarb M (1997) Murine

FGF-12 and FGF-13: expression in embryonic nervous system, connective

773	Hide M, Francis DM, Grattan C, Hakimi J, Kochan JP, Greaves MW (1993)
774	Autoantibodies against the high-affinity IgE receptor as a cause of
775	histamine release in chronic urticaria. New Engl J Med 328(22):1599-1604.

tissue and heart. Mech Dev 64:31-39.

- Huang J, Li G, Xiang J, Yin D, Chi R (2004) Immunohistochemical study of serotonin
 in lesions of chronic eczema. Int J Dermatol 43: 723-726.
- 778 Ikoma A, Rukwied R, Ständer S, Steinhoff M, Miyachi Y, Schmelz M (2003)
 779 Neuronal sensitization for histamine-induced itch in lesional skin of patients
 780 with atopic dermatitis. Archives of dermatology 139(11):1455-1458.
- Imamachi N, Park GH, Lee H, Anderson DJ, Simon MI, Basbaum AI, Han SK (2009)
 TRPV1-expressing primary afferents generate behavioral responses to
 pruritogens via multiple mechanisms. Proc Natl Acad Sci USA 106:
 11330-11335.
- Jin H, He R, Oyoshi M, Geha RS (2009) Animal models of stopic dermatitis. J Invest
 Dermatol 129:31-40.
- Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee
 JH, Lehto SG, Ligutti J, Liu D, Luther J, Matson D, Ortuno D, Roberts J,
 Taborn K, Wang J, Weiss MM, Yu V, Zhu DXD, Fremeau RT, Moyer BD
 (2017) Pharmacologic characterization of AMG8379, a potent and selective
 small molecule sulfonamide antagonist of the voltage-gated sodium channel
 Na_v1. 7. J Pharmacol Exp Ther 362:146-160.

793 Kühn H, Kappes L, Wolf K, Gebhardt L, Neurath MF, Reeh P, Fischer MJM, Kremer

772

794	AE (2020) Complementary roles of murine Na _V 1.7, Na _V 1.8 and Na _V 1.9 in
795	acute itch signalling. Sci Rep 10:2326.
796	Laezza F, Gerber BR, Lou JY, Kozel MA, Hartman H, Craig AM, Orntiz DM,
797	Nerbonne JM (2007) The FGF14F145S mutation disrupts the interaction of
798	FGF14 with voltage-gated Na ⁺ channels and impairs neuronal excitability. J
799	Neurosci 27:12033-12044.
800	Laezza F, Lampert A, Kozel MA, Gerber BR, Rush AM, Nerbonne JM, Waxman SG,
801	Dib-Hajj SD, Ornitz DM (2009) FGF14 N-terminal splice variants
802	differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol
803	Cell Neurosci 42:90-101.
804	Leonardi A (2002) The central role of conjunctival mast cells in the pathogenesis of
805	ocular allergy. Curr Allergy Asthma Rep 2:325-331.
806	Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ,
807	Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X (2016) Somatosensory
808	neuron types identified by high-coverage single-cell RNA-sequencing and
809	functional heterogeneity. Cell Res 26:83-102.
810	Liu CJ, Dib-Hajj SD, Waxman SG (2001) Fibroblast growth factor homologous factor
811	1B binds to the C terminus of the tetrodotoxin-resistant sodium channel
812	rNa _v 1.9a (NaN). J Bio Chem 276:18925-18933.
813	Liu CJ, Dib-Hajj SD, Renganathan M, Cummins TR, Waxman SG (2003) Modulation
814	of the cardiac sodium channel $Na_v 1.5$ by fibroblast growth factor
815	homologous factor 1B. J Biol Chem 278:1029-1036.

816	Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ,
817	Geng Y, Undem BJ, Kollarik M, Chen ZF, Aderson DJ, Dong X (2009)
818	Sensory neuron-specific GPCR Mrgprs are itch receptors mediating
819	cholorquine-induced pruritus. Cell 139:1353-1365.
820	Lou JY, Laezza F, Gerber BR, Xiao M, Yamada KA, Hartmann H, Craig AM,
821	Nerbonne JM, Ornitz DM (2005) Fibroblast growth factor 14 is an
822	intracellular modulator of voltage-gated sodium channels. J Physio
823	569:179-193.
824	Marx IE, Dineen TA, Able J, Bode C, Bregman H, Chu-Moyer M, DiMauro EF, Du B
825	Foti RS, Fremeau RT, Gao H, Gunaydin H, Hall BE, Huang L, Kornecook T
826	Kreiman CR, La DS, Ligutti J, Lin MJ, Liu D, McDermott JS, Moyer BD,
827	Peterson EA, Roberts JT, Rose P, Wang J, Youngblood BD, Yu V, Weiss
828	MM (2016) Sulfonamides as selective Nav1.7 inhibitors: optimizing
829	potency and pharmacokinetics to enable in vivo target engagement. ACS
830	Med Chem Lett 7:1062-1067.
831	Mishra SK, Hoon MA (2013) The cells and circuitry for itch responses in mice.
832	Science 340: 968-971.
833	Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K,
834	Olsen AS, Wong JF, Stucky CL, Brem RB, Bautista DM (2015) HTR7
835	mediates serotonergic acute and chronic itch. Neuron 87:124–138.

836 Moses S (2003) Pruritus. Am Fam Physician 68(6):1135-1142.

837 Pablo JL, Pitt GS (2016) Fibroblast growth factor homologous factors: new roles in

838	neuronal health and disease. Neuroscientist 22:19-25.
839	Paus R, Schmelz M, Biro T, Steinhoff M (2006) Frontiers in pruritus
840	research:scratching the brain for more effective itch therapy. J Clin Invest
841	116:1174-1186.
842	Puranam RS, He XP, Yao L, Le T, Jang W, Rehder CW, Lewis DV, McNamara JO
843	(2015) Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance
844	and genetic epilepsy and febrile seizures plus. J Neurosci 35: 8866-8881.
845	Rasul A, Nordlind K, Wahlgren CF (2013) Pruritic and vascular responses induced by
846	serotonin in patients with atopic dermatitis and in healthy controls. Acta
847	Derm-Venereol 93:277-280.
848	Rossbach K, Nassenstein C, Gschwandtner M, Schnell D, Sander K, Seifert R, Stark
849	H, Kietzmann M, Baumer W (2011) Histamine H1, H3 and H4 receptors are
850	involved in pruritus. Neuroscience 190:89-102.
851	Shim WS, Oh U (2008) Histamine-induced itch and its relationship with pain. Mol
852	Pain 4:1744-8069.
853	Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, Lee CH, Kim M, Oh U (2007)
854	TRPV1 mediates histamine-induced itching via the activation of
855	phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331-2337.
856	Skare Ø, Lie RT, Haaland ØA, Gjerdevik M, Romanowska J, Gjessing HK, Jugessur,
857	A (2018) Analysis of parent-of-origin effects on the X chromosome in Asian
858	and European orofacial cleft triads identifies associations with DMD,
859	FGF13, EGFL6, and additional loci at Xp22. 2. Front Genet 9:25.

860	Soga F, Katoh N, Inoue T, Kishimoto S (2007) Serotonin activates human monocytes
861	and prevents apoptosis. J Invest Dermatol 127:1947-1955.
862	Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4
863	receptors in allergic inflammation: the search for new antihistamines. Nat
864	Rev Drug Discov 7:41-53.
865	Wilson SR, Gerhold KA, Bifolck-Fisher A, Liu Q, Patel KN, Dong X, Bautista DM
866	(2011) TRPA1 is required for histamine-independent, Mas-related G
867	protein-coupled receptor-mediated itch. Nat Neurosci 14:595-602.
868	Wu QF, Yang L, Li S, Wang Q, Yuan XB, Gao X, Bao L, Zhang X (2012) Fibroblast
869	growth factor 13 is a microtubule-stabilizing protein regulating neuronal
870	polarization and migration. Cell 149: 1549-1564.
871	Yan H, Pablo JL, Wang C, Pitt GS (2014) FGF14 modulates resurgent sodium current
872	in mouse cerebellar Purkinje neurons. Elife 3:e04193.
873	Yang L, Dong F, Yang Q, Yang PF, Wu R, Wu QF, Wu D, Li CL, Zhong YQ, Lu YJ,
874	Cheng X, Xu FQ, Chen L, Bao L, Zhang X (2017) FGF13 selectively
875	regulates heat nociception by interacting with Nav1.7. Neuron 93: 806-821.
876	Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, Wu G, Jin J,
877	Ding B, Zhu X, Shen Y (2004) Mutations in SCN9A, encoding a sodium
878	channel alpha subunit, in patients with primary erythermalgia. J Med Genet
879	41:171-174.
880	Zhang F, Wu Y, Xue S, Wang S, Zhang C, Cao Z (2019) 3'-O-Methylorobol inhibits

881

the voltage-gated sodium channel $Na_V 1.7$ with anti-itch efficacy in a

histamine-dependent itch mouse model. Int J Mol Sci 20: 6058.

883

882

884 Figures and Legends

Figure 1. FGF13 is required for histamine-induced itch and neuronal response.

886 (A) The behavior test showing altered scratching number in FGF13-deficient mice. The scratching number induced by intradermal injection of histamine (500 μ g/50 μ l) 887 in *Fgf13*^{-/Y} mice (n = 28) was significantly decreased compared with that in *Fgf13*^{F/Y} 888 mice (n = 31). The data were binned every 5 min (upper) and analyzed during 30 min 889 (lower). Intradermal injection of vehicle barely induced scratching behavior in both 890 $Fgf13^{F/Y}$ and $Fgf13^{/Y}$ mice. (B) Calcium imaging showing reduced percentage of 891 histamine-responding neurons in $Fgf13^{-/Y}$ mice. A representative trace was shown 892 from a histamine-responding neuron in calcium imaging (left). The percentage of 893 histamine-responding neurons was reduced in $Fgfl3^{/Y}$ mice (n = 8 from 1~2 mice 894 each, 707 cells), compared with $Fgfl3^{F/Y}$ mice (n = 8 from 1~2 mice each, 850 cells) 895 (middle). The magnitude of the Ca^{2+} response was similar in neurons from $Fgfl3^{F/Y}$ 896 (43 neurons) and $Fgfl3^{-/Y}$ mice (6 neurons) (right). (C) Whole-cell patch-clamp 897 recording showing failed AP firing in neurons from $Fgf13^{-/Y}$ mice (n = 6 mice, 43 898 cells), compared with $Fgf13^{F/Y}$ mice (n = 7 mice, 53 cells). Examples of a neuron 899 elicited AP firing and a neuron failed to elicit APs upon 1 mM histamine treatment 900 901 were displayed (left). Data represent mean \pm SEM. ***P < 0.001 for comparison between two curves (two-way ANOVA). ***P < 0.001 versus $Fgf13^{F/Y}$ mice. 902

Figure 2. FGF13B mediates the histamine-induced neuronal response. (A)
Immunoblotting showing shRNA-mediated knockdown of FGF13 isoform. Schematic
diagram of shRNAs designed to target against FGF13A mRNA (shFGF13A) and

906	FGF13A/B mRNA (shFGF13) (left upper). Immunoblotting displayed that the
907	FGF13B expression was significantly reduced in neurons treated with shFGF13,
908	instead of shFGF13A and shNC. Data were quantified and plotted as normalized
909	values versus FGF13B from neurons treated with shNC (right). The FGF13B level
910	was largely dropped in neurons treated with shFGF13 but almost unaltered in neurons
911	treated with shFGF13A, and the FGF13A level was reduced in neurons treated with
912	both shFGF13 and shFGF13A. Data represent mean \pm SEM. *P < 0.05 and ***P <
913	0.001 versus shNC. (B) Calcium imaging showing reduced percentage of
914	histamine-responding neurons after knockdown of FGF13. Representative traces of
915	calcium imaging were exhibited from histamine-responding neurons and
916	histamine-non-responding neurons (left) treated with shFGF13 or shFGF13A. The
917	percentage of histamine-responding neurons was markedly reduced in neurons treated
918	with shFGF13 (n = 4 from $1\sim2$ mice each, 185 cells), compared to neurons treated
919	with shFGF13A (n = 4 from $1 \sim 2$ mice each, 277 cells) (right). Data represent mean \pm
920	SEM. $*P < 0.05$ versus shFGF13A.

Figure 3. H1R is the main receptor for FGF13-mediated histamine signaling. (A)
Single-cell RNA sequencing showing the expression profile of histamine receptors,
H1R, H2R, H3R and H4R in the DRG neuron types (C1~C10) of mice. H1R and H2R
were primarily expressed in C2 and C4 small DRG neurons, and H3R was mainly
expressed in C3 type of small DRG neurons. H4R was barely expressed in such
neurons. (B) Whole-cell patch-clamp recording showing AP firing evoked by 1 mM
histamine from neurons overexpressing H1R, H2R, H3R, H4R or vector.

928	Representative AP firing from neurons responding to histamine was shown (left). The
929	percentage of neurons responding to histamine was the significantly highest when
930	transfected with H1R (n = 6 from $1 \sim 2$ mice each, 36 cells) compared to vector (n = 3
931	from $1\sim2$ mice each, 17 cells), H2R (n = 4 from $1\sim2$ mice each, 14 cells), H3R (n = 3
932	from $1\sim2$ mice each, 23 cells) and H4R (n = 4 from $1\sim2$ mice each, 19 cells). The
933	patch-clamp recording showed that more than 60% DRG neurons expressing H2R,
934	H3R or H4R responded to its agonist, suggesting normal function of these expressed
935	receptors. Data represent mean \pm SEM. ***P < 0.001 versus vector. (C) The behavior
936	test showing reduced scratching number induced by intradermal injection of H1R
937	agonist HTMT within 30 min in $Fgf13^{-/Y}$ mice (n = 7) compared to $Fgf13^{F/Y}$ mice (n =
938	8). However, the scratching number induced by H2R agonist Dimaprit, H3R agonist
939	immethridine or H3R antagonist H4R agonist clobenpropit was not significantly
940	changed. Data represent mean \pm SEM. **P < 0.01 versus <i>Fgf13</i> ^{F/Y} mice. (D)
941	Whole-cell patch-clamp recording showing that the reduced percentage of neurons
942	responding to histamine in $Fgf13^{-/Y}$ mice ($Fgf13^{F/Y}$: n = 4 from 3 mice each, 24 cells;
943	$Fgf13^{-/Y}$: n = 4 from 3 mice each, 17 cells) was rescued by FGF13B overexpression (n
944	= 3 from 2 mice each, 21 cells). Representative AP firing from neurons responding to
945	1 mM histamine was shown (left). Data represent mean \pm SEM. **P < 0.01 versus
946	$Fgf13^{F/Y}$ mice, and $^{\#}P < 0.05$ versus $Fgf13^{-/Y}$ mice.
947	Figure 4. FGF13 does not physically and functionally affect H1R. (A)

Figure 4. FGF13 does not physically and functionally affect H1R. (A)
Immunoblots showing that FGF13 was barely interacted with H1R. Co-IP was
performed with protein extracts from DRGs using FGF13 antibody and control IgG (n

= 3). (B) Immunoblots showing that the level of H1R was not significantly changed in 950 cultured DRG neurons between $Fgf13^{F/Y}$ and $Fgf13^{-/Y}$ mice (n = 5). (C) Calcium 951 imaging showing that the increased Ca²⁺ signals were not significantly larger in 952 HEK293 cells co-expressing H1R with FGF13B (n = 4, 178 cells) than that 953 954 co-expressing H1R with vector (n = 4, 220 cells). Representative images of a HEK293 cell co-expressing FGF13B-IRES-EGFP (green) and H1R-mCherry (red) 955 were shown (left). The representative trace from a H1R-expressing HEK293 cell 956 responding to histamine was measured in calcium imaging (middle). Scale bar: 10 µm. 957 958 Data represent mean \pm SEM.

Figure 5. Nav1.7 is crucial for the histamine-H1R signaling. (A) Whole-cell 959 960 patch-clamp recording showing the reduced percentage of histamine-responding neurons evoked by 1 mM histamine after the incubation at least for 30 min with TTX 961 (n = 3, 29 cells) or Protoxin-II (n = 3, 32 cells) compared to that with ECS (n = 3, 31)962 cells). (B - D) Whole-cell patch-clamp recording showing the change of AP firing in 963 H1R-expressing neurons evoked by 1 mM histamine after 3-min ECS (B), TTX (C) or 964 Protoxin-II (D) perfusion. Representative AP firing from a H1R-expressing neuron 965 responding to 1 mM histamine was shown (left). The neurons were still able to fire 966 967 APs after 3-min ECS perfusion (B, n = 7), but displayed a significantly smaller number of APs after 3-min 1 μ M TTX (C, n = 17) or 10 nM Protoxin-II (D, n = 12) 968 perfusion. The spike number evoked by histamine was calculated before and after 969 970 histamine treatment and then data were normalized to that before histamine treatment. Data represent mean \pm SEM. *P < 0.05, **P < 0.01 versus ECS (A), and ***P < 0.001 971

972 versus Before (C, D).

973 Figure 6. FGF13/Na_v1.7 interaction is vital for histamine-induced itch. (A) Co-IP

974 was performed with protein extracts from cultured neurons with or without 5-min 975 histamine incubation using FGF13 antibody or control IgG. Immunoblots and 976 quantitative data showed that the level of FGF13 interacted with Nav1.7 was significantly increased after 5-min 1 mM histamine incubation (n = 6). *P < 0.05977 versus without histamine incubation. (B) Calcium imaging showing reduced 978 percentage neurons responding to 1 mМ histamine treated with 979 of GST-Flag-Na_v1.7CT-TAT (n = 4, from 1~2 mice each, 428 cells), compared with 980 GST-Flag-TAT (n = 4 from $1 \sim 2$ mice each, 509 cells). Data represent mean \pm SEM. 981 982 **P < 0.01 versus GST-Flag-TAT. (C) Normalized I/V plots from recordings showing no significant change of Nav1.7 currents in HEK293 cells expressing Nav1.7 treated 983 with GST-Flag-TAT and Nav1.7CT-TAT. (D) A schematic illustration of the 984 experiment carried out for the scratching behavior tests. Mice were i.p. injected with 985 the dose of 60 mg/kg GST-Flag-TAT, Nav1.7CT-TAT or vehicle at 1-h intervals for 4 986 times. Then, the mice were i.d. injected with 500 μ g/50 μ l histamine at 5-6 h after last 987 injection. The scratching behavior was immediately recorded. (E) The behavior test 988 989 showing the reduced scratching number induced by histamine in mice treated with GST-Flag-Na_V1.7CT-TAT (n = 3), compared with mice treated with GST-Flag-TAT (n990 = 3) or vehicle (n = 4). Data represent mean \pm SEM. **P < 0.01 versus vehicle, and 991 $^{\#}P < 0.01$ versus indicated. 992

993 Figure 7. FGF13 participates in other types of itch. (A, B) The behavior test

994	showing altered scratching number induced by 5-HT and CQ in FGF13-deficient mice.
995	The scratching number induced by intradermal injection of 5-HT (10 $\mu g/50~\mu l)$ in
996	$Fgf13^{-/Y}$ mice (n = 32) was significantly decreased compared with that in $Fgf13^{F/Y}$
997	mice $(n = 31)$ (A). The data were binned every 5 min (left) and analyzed during 30
998	min (right). The total scratching bouts induced by CQ (lower-right) were also
999	significantly reduced (lower-right) in $Fgf13^{-/Y}$ mice (n = 30) compared with $Fgf13^{F/Y}$
1000	mice $(n = 27)$ (B). (C) Calcium imaging showing the neuronal responses to 5-HT or
1001	CQ in $Fgf13^{-/Y}$ mice. A representative trace was shown (left) from neurons responding
1002	to 5-HT or CQ in calcium imaging. The response to KCl indicates the normal activity
1003	of a neuron. The percentage of 5-HT-responding neurons was reduced significantly in
1004	<i>Fgf13</i> ^{-/Y} mice (n = 4 from 1~2 mice each, 214 cells), compared with <i>Fgf13</i> ^{F/Y} mice (n
1005	= 4 from $1 \sim 2$ mice each, 286 cells). The percentage of neurons responding to CQ was
1006	not significantly reduced in $Fgf13^{-/Y}$ mice (middle). The magnitude of the Ca ²⁺
1007	response (right) evoked by 5-HT or CQ remained unaltered in neurons from $Fgf13^{F/Y}$
1008	and $Fgf13^{-/Y}$ mice (right). (D) The behavior test showing significantly decreased
1009	scratching number in $Fgfl3^{-/Y}$ mice (n = 6) in the chronic itch model induced by
1010	DNFB at day 6, 8, 10 and 12 compared with $Fgf13^{F/Y}$ mice (n = 9). (E) The flinching
1011	behavior following capsaicin injection was significantly reduced in $Fgf13^{-/Y}$ mice. (F)
1012	The flinching behavior after AITC injection remained unaltered in $Fgf13^{-/Y}$ mice. Data
1013	represent mean \pm SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus <i>Fgf13</i> ^{-/Y} mice.

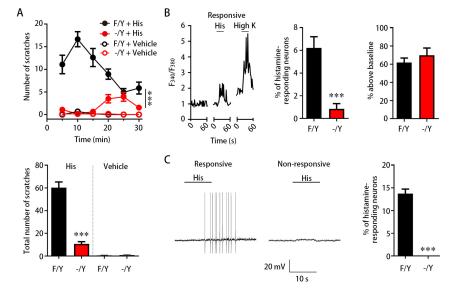


Figure 1. Dong et al., 2020

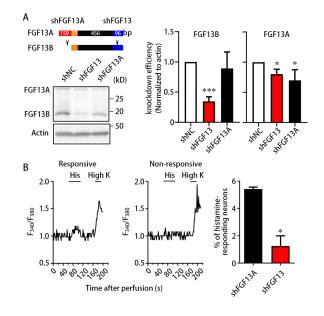


Figure 2. Dong et al., 2020

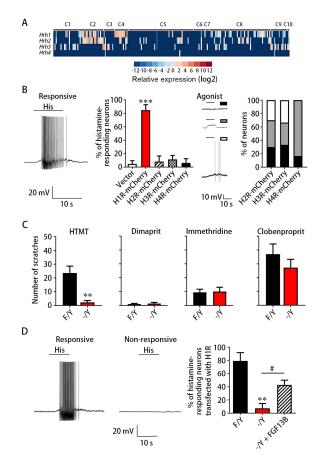


Figure 3. Dong et al., 2020

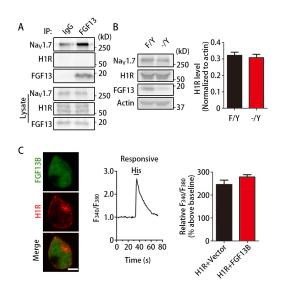


Figure 4. Dong et al., 2020

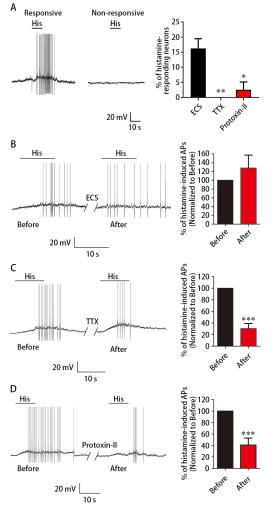


Figure 5. Dong et al., 2020

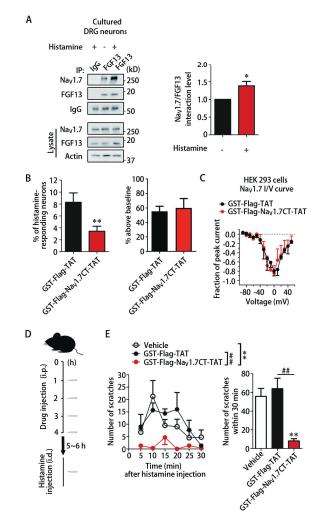


Figure 6. Dong et al., 2020

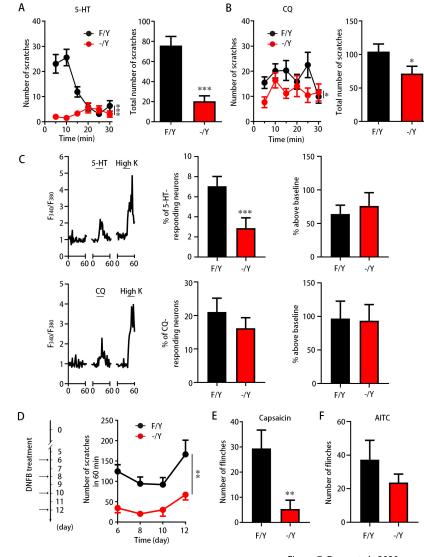


Figure 7. Dong et al., 2020