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Abstract: Thymic stromal lymphopoietin (TSLP) is released by epithelial cells following disturbed
homeostasis to act as “alarmin” and driver of Th2-immunity. Aberrant TSLP expression is a hallmark
of atopic diseases, including atopic dermatitis (AD). Mast cells (MCs) are overabundant in AD lesions
and show signs of degranulation, but it remains unknown whether TSLP contributes to granule
discharge. Degranulation of skin MCs proceeds via two major routes, i.e., FcεRI-dependent (allergic)
and MRGPRX2-mediated (pseudo-allergic/neurogenic). Evidence is accumulating that MRGPRX2
may be crucial in the context of skin diseases, including eczema. The current study reveals TSLP as a
novel priming factor of human skin MCs. Interestingly, TSLP selectively cooperates with MRGPRX2
to support granule discharge, while it does not impact spontaneous or FcεRI-driven exocytosis.
TSLP-assisted histamine liberation triggered by compound 48/80 or Substance P, two canonical
MRGPRX2 agonists, was accompanied by an increase in CD107a+ cells (a MC activation marker). The
latter process was less potent, however, and detectable only at the later of two time points, suggesting
TSLP may prolong opening of the granules. Mechanistically, TSLP elicited phosphorylation of
STAT5 and JNK in skin MCs and the reinforced degranulation critically depended on STAT5 activity,
while JNK had a contributory role. Results from pharmacological inhibition were confirmed by
RNA-interference, whereby silencing of STAT5 completely abolished the priming effect of TSLP on
MRGPRX2-mediated degranulation. Collectively, TSLP is the first factor to favor MRGPRX2- over
FcεRI-triggered MC activation. The relevance of TSLP, MCs and MRGPRX2 to pruritis and atopic
skin pathology indicates broad repercussions of the identified connection.
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1. Introduction

Acute mast cell (MC) activation leads to hypersensitivity reactions and is the root
of disorders like rhinoconjunctivitis, asthma, urticaria, angioedema, food allergy, and
anaphylaxis [1,2]. In these conditions, degranulation leads to multiple symptoms in the
respective organs caused by the mediators rapidly secreted from MCs, especially histamine.
Clinically relevant MC activation can be evoked by the allergic route involving FcεRI, IgE,
and allergen, or by the more recently discovered MAS-related G protein coupled receptor-
X2 (MRGPRX2)-dependent pathway. The latter receptor can be activated by a wide range
of agonists, including neuropeptides (e.g., Substance P) and exogenous substances (like
compound 48/80, antibiotics, opiates) [3–8]. The efficient triggering of MC degranulation
and the large number of ligands have moved MRGPRX2 to the center of attention in recent
years [9–14]. In fact, the receptor is now widely believed to constitute a major participant in
drug-induced pseudo-allergic/anaphylactoid phenomena and in MC-dependent diseases
triggered by exogenous or endogenous neuro-, host defense, and other peptides [4,6,15,16].
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Only certain MC-subtypes, especially those in the skin (so-called MCTC-type MCs)
express MRGPRX2 at high level [17–20], while MCs in most other organs do not express
the receptor, and hence are refractory to stimulation by its ligands [21–23]. Skin MCs are
thus the most adequate system to explore MRGPRX2 regulation and function, as they are
also the most likely responders to MRGPRX2 ligands in physiological and pathological
contexts in vivo.

The allergic and pseudo-allergic pathways differ fundamentally in several aspects,
including spatiotemporal patterns of granule discharge and dependence on IKK-β, the
latter involved in SNAP23/STX4 complex formation, which is key to the so-called com-
pound exocytosis observed following FcεRI aggregation, in which granules fuse together
and are released as bigger, more heterogeneously shaped entities [24]. Interestingly, several
typically supportive factors of the MC lineage can curb MRGPRX2 function, as highlighted
by SCF [18,19], the most universal growth factor of the lineage [11,25–27]. This likewise
applies to a certain extent to IL-4 [19] and IL-33, the latter dampening MRGPRX2 expression
and thereby curtailing its function [28]. Retinoic acid, regulating a number of functions in
the MC lineage [29], likewise dampens the MRGPRX2-dependent route [30]. It is of note
that all but IL-33 influence FcεRI-dependent stimulation in the opposite way, indicating
that several conditions can favor one route over the other. An exception is IL-33 which,
when provided as an acute stimulus, supports degranulation triggered via both FcεRI and
MRGPRX2 [28].

Together with IL-33, thymic stromal lymphopoietin (TSLP) is widely recognized as
a critical factor in allergic disorders, including rhinitis, asthma, food allergy, eosinophilic
esophagitis, and atopic dermatitis (AD), i.e., conditions, in which MCs act as critical effector
cells [31–36]. As a consequence, the anti-TSLP antibody tezepelumab is in clinical trials for
asthma and AD [37,38].

Both IL-33 and TSLP belong to the subgroup of epithelial-derived innate cytokines
that support Th2 responses in part by re-programming of dendritic cells and support
of innate lymphoid cells [35,39–41]. Interestingly, however, MCs were the most efficient
producers of the TSLPR transcript (gene: CRLF2) in the FANTOM5 (Functional annotation
of the mammalian genome 5) atlas, a transcriptome collection of roughly 1800 cell and
tissue samples from all across the body, pointing towards MCs as meaningful target
cells [17,42,43]. Following up on this finding, we recently reported that TSLP efficiently
maintains survival of skin MCs by acting through a complex mechanism composed of two
parallel axes, i.e., STAT5/Mcl-1 and JNK/Bcl-xl [44]. While being renowned for its Th2
skewing potential, TSLP can, in addition to these more long-term effects, act as an epithelial
alarmin, that is swiftly synthesized and released upon tissue damage, including microbial
challenge, trauma, and physical or chemical insults [45–47]. Under these circumstances,
TSLP can act acutely, and MCs are ideally positioned in tissues to swiftly respond to and
integrate signals from infectious agents, allergens, drugs and tissue-derived alarmins.

TSLP, cutaneous MCs, FcεRI and, more recently, MRGPRX2 have all been linked to
AD pathogenesis [9,36,48], and we theorized that these elements may be inter-connected.
We now report that TSLP can indeed modulate the secretory competence of skin MCs.
Surprisingly, however, only MRGPRX2-evoked degranulation was promoted by TSLP,
whereas allergic stimulation remained unaffected. In addition to histamine release, TSLP
promoted CD107a exteriorization, yet to a lesser extent. Mechanistically, TSLP support
was orchestrated by the dominant action of STAT5 with further support from JNK, the two
cascades most prominently activated by TSLP in skin MCs [44].

2. Materials and Methods
2.1. Skin Samples

This was an unlinked anonymous study. Donor skins, which otherwise would be
disposed of, were obtained from circumcisions (foreskin), with written informed consent
of the patients or their legal guardians, as in previous studies from our group [18,19,28,44].
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The study was approved by the Ethics Committee of the Charité Universitätsmedizin Berlin
and experiments were conducted according to the Declaration of Helsinki Principles.

2.2. Skin MC Purification and Culture

MCs were isolated from skin samples by a routine procedure, as described [49,50].
Briefly, foreskin samples from 2 to 10 donors (most commonly 3–7) were pooled, the skin cut
into strips and treated with dispase (BD Biosciences, Heildelberg, Germany) at 3.5 U/mL
and 4 ◦C overnight. The epidermis was removed, the dermis was chopped and digested
with 1.5 mg/mL collagenase type 1 (Worthington, Lakewood, NJ, USA), 0.75 mg/mL
hyaluronidase type 1-S (Sigma, Steinheim, Germany), and DNase I at 10 µg/mL (Roche,
Basel, Switzerland) at 37 ◦C in a shaking water bath for 75 min. The cells were separated
from remaining tissue by filtration. MC purification was achieved by positive selection with
anti-human c-Kit microbeads and the Auto-MACS (both from Miltenyi Biotec, Bergisch
Gladbach, Germany). MC purity always exceeded 98%, as assessed by acidic toluidine-
blue staining. MC culture was performed as described previously [17,51,52]. In brief, cells
were cultured at 5 × 105/mL in Basal Iscove medium with 10% FCS (Biochrom, Berlin,
Germany) for around 3 weeks. SCF (Peprotech, Rocky Hill, NJ, USA) (at 100 ng/mL) and
IL-4 (Peprotech) (10 ng/mL) were provided twice a week.

2.3. Histamine Release Assay (HRA)

The HRA was performed according to a method routinely employed in our lab-
oratory [5,53]. In brief, MCs in PAG-CM buffer (Piperazine-N,N-bis [2-ethanesulfonic
acid]-Albumin-Glucose buffer containing 3 mM CaCl2 and 1.5 mM MgCl2, pH 7.4) were
stimulated by FcεRI-aggregation (anti-AER-37 antibody at 0.2 µg/mL eBioscience, San
Diego, CA, USA), or c48/80 (Sigma, at 10 µg/mL), or Substance P (SP) (Bachem, Budendorf,
Switzerland at 30 µM), or no stimulus (spontaneous) for 30 min at 37 ◦C. Priming with
TSLP (7.5 ng/mL) versus PAG-CM (buffer control) was performed for 30 min before stimu-
lation. Histamine in the supernatants was measured by an automated fluorescence method
(Alliance Instruments, Salzburg, Austria). Total cellular histamine content was measured
analogously. All determinations were performed in triplicate. Net histamine release (%)
was calculated as ((stimulated release–spontaneous release)/complete histamine in the MC
preparation) × 100.

For inhibitor studies in the absence of TSLP, cells were pretreated with SP600125
at 5 µM (JNK inhibitor) or Pimozide at 5 µM (STAT5 inhibitor) versus PAG-CM buffer
(control) for 15 min and then stimulated with the above stimuli for 30 min.

To study the involvement of selected kinases in TSLP’s potentiation of degranulation,
cells were pretreated with the above inhibitors for 15 min, TSLP was added to selected
vials, and finally the secretagogues (AER-37 or MRGPRX2 ligands) were added as above.

2.4. Accell® Mediated RNA Interference (RNAi)

RNA interference in MCs was performed according to an established protocol by using
the Accell® siRNA technology (Dharmacon, Lafayette, CO, USA) [28,44,54]. Briefly, MCs
were washed with Accell siRNA medium (supplemented with Non-Essential Amino Acids
and L-Glutamine), plated at 1 × 106/mL in Accell siRNA medium and treated with 1 µM
STAT5-targeting siRNA (E-005169-00-0050), or JNK-targeting siRNA (E-003514-00-0050)
or non-targeting siRNA as control (D-001910-10-50) for 48 h. After incubation, cells were
primed with or without TSLP and degranulation was induced by MRGPRX2 ligands
as above.

2.5. β-Hexosaminidase Release Assay

β-hexosaminidase assays were run exactly as described [28,50]. Briefly, cell suspen-
sions were washed, resuspended at 5 × 105 cells/mL in PAG-CM buffer. Aliquots of 100 µL
were stimulated by compound 48/80 (10 µg/mL), or SP (30 µM), or kept in buffer only.
After incubation for 60 min, supernatants (SNs) were collected by centrifugation at 500× g,
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4 ◦C for 3 min, and the pelleted MCs rapidly frozen at −80 ◦C. After thawing, aliquots of
50 µL of 4-methyl umbelliferyl-N-acetyl-beta-D-glucosaminide (Sigma-Aldrich, Munich,
Germany) solution at 5 µM in citrate buffer (pH 4.5) were mixed with the same volume
of supernatant or lysate and incubated for 60 min at 37 ◦C. The reaction was stopped by
adding 100 mM sodium carbonate buffer (pH 10.7). Fluorescence intensity was measured
at an emission wavelength of 460 nm after excitation at 355 nm. Percent β-hexosaminidase
release was calculated as (fluorescence intensity SN/(fluorescence intensity SN + fluo-
rescence intensity lysate)) × 100. Net release was calculated by subtracting spontaneous
release, as in the histamine release assay above.

2.6. Flow Cytometry

Flow-cytometric detection of CD107a cell surface expression was as described [5,55].
In brief, MCs were pre-stimulated with or without TSLP (7.5 ng/mL) for 30 min, then
subjected to 0.2 µg/mL FcεRI-aggregation (anti-AER-37 antibody for 15 min, 30 min,
60 min), 10 µg/mL c48/80 or 30 µM SP (for 2 min and 8 min), or no stimulus (control).
The reaction was stopped by ice-cold 4% paraformaldehyde for 15 min. After washing,
the cells were incubated with 10 µL of anti-human CD107a-FITC antibody (LAMP-1)
(BioLegend, San Diego, CA, USA) together with 10 µL of human AB-serum for 30 min at
4 ◦C, then washed and CD107a expression was detected by the Facscalibur (BD Biosciences,
San Jose, CA, USA).

MRGPRX2 cell surface staining was performed according to established protocols
mboxciteB5-cells-1019244,B28-cells-1019244. In brief, cells were blocked for 15 min with
human AB-serum, incubated with anti-human MRGPRX2 (clone K125H4, Biolegend,
0.15 µg/mL) or isotype mouse IgG2b-PE (clone eBMG2b, eBioscience) for 30 min at 4 ◦C,
and analyzed as above.

Intracellular staining of signaling intermediates was performed exactly as described [44].
In brief, MCs were incubated for 30 min with TSLP, then fixed with 4% paraformaldehyde
and permeabilized with Saponin prior to being stained with anti-pSTAT5 or anti-pJNK
primary antibodies or the respective isotype control (both from Cell Signaling Technologies,
Danvers, MA, USA), followed by incubation with a PE-labeled secondary antibody (Jackson
Immunoresearch, Cambridgeshire, UK).

All data were analyzed with the FlowJo 7.6.5 analysis software (FlowJo LLC, Ashland,
OR, USA).

2.7. Immunoblotting

Cell preparation and immunoblotting were performed as described [44]. In brief,
MCs were incubated or not with TSLP for 30 min, lysed and lysates separated through
4–12% Bis-Tris Gel (Thermofisher, Bleiswijk, The Netherlands) SDS-PAGE, the proteins
transferred to nitrocellulose membranes, the membranes blocked with 1× casein block-
ing buffer (Sigma Aldrich, St. Louis, MO, USA) and incubated with primary antibodies
against phospho- and total-STAT5 as well as ß-actin (all from Cell Signaling Technologies)
overnight and subsequently with horseradish peroxidase-conjugated secondary antibodies
(Merck Millipore, Darmstadt, Germany). Blots were developed, and bands visualized
by a chemiluminescence assay (Weststar Ultra 2.0, Cyanagen, Bologna, Italy) according
to the manufacturer’s instructions, and the bands were recorded using a detector for
chemiluminescence (Fusion FX7 Spectra, Vilber Lourmat, Eberhardzell, Germany). Densit-
ometric measurements were assessed by the software ImageJ (National Institutes of Health,
Bethesda, MD, USA) and arbitrary values were determined as relative target expression
(densitytarget protein/densityloading control protein); relative target expression of control
cells was set as 1.

2.8. Statistical Analysis

Statistical analyses were performed using PRISM 8 (GraphPad Software, La Jolla, CA,
USA). Pairwise comparisons of TSLP priming versus control were conducted by Student’s
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t-test. One sample t-test (against 1) was used to calculate significance in normalized im-
munoblot data. For multi-group comparisons, RM one-way ANOVA with Sidak’s multiple
comparisons test were applied. Fold changes (FC) of histamine and CD107a were cal-
culated as net “parameter” after TSLP priming/net “parameter” without TSLP priming,
whereby parameter refers to percent histamine release or the proportion of CD107a+ cells.
The resulting FC (fold change) values were compared by Mann–Whitney test. p < 0.05 was
considered statistically significant.

3. Results
3.1. TSLP Primes Human Skin-Derived MCs for Enhanced MRGPRX2-Elicited Degranulation

So far, a positive impact of TSLP on MC cytokine production was reported [56–58]
and TSLP was also found to stimulate PGD2 from cord-blood-derived MCs [59].

The most selective MC function, i.e., degranulation with the release of prefabricated
histamine and other mediators confined to these cells, has not been investigated or not
found to be modulated by TSLP [60].

In skin-derived MCs, TSLP alone had likewise no impact on histamine release, i.e.,
did neither degranulate MCs on its own nor inhibit spontaneous histamine liberation
(Figure 1A). Conversely, cells exposed to TSLP for 30 min prior to stimulation by the
canonical MRGPRX2 ligands c48/80 (exogenous) or SP (endogenous) showed effective
potentiation of histamine liberation over the secretagogues alone (Figure 1B,C). The effect
was similar across multiple MC cultures, resulting in significant differences between
pretreatments. Cells primed with TSLP and subsequently exposed to FcεRI aggregation
showed an increase in some cultures only, while due to high variability across MC cultures,
significance was not reached and no overall increase in FcεRI-triggered degranulation
therefore detected (Figure 1D). The effect of TSLP on MC degranulation was not due to
enhanced expression of MRGPRX2 at the cell surface, which remained comparable after
TSLP (Supplementary Materials Figure S1A,B). This suggested that it was the signaling
events initiated by the TSLP/TSLPR axis that synergized with the cascade elicited by
MRGPRX2 to evoke degranulation.
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Figure 1. Thymic stromal lymphopoietin (TSLP) priming selectively promotes MRGPRX2-mediated
histamine release in human skin mast cells (MCs). Skin-derived MCs were pre-stimulated with TSLP
(7.5 ng/mL) or vehicle (control) for 30 min prior to stimulation. Histamine release was assessed
30 min after treatment with (A) no stimulus; (B) c48/80 (10 µg/mL); (C) Substance P (SP) (30 µM);
(D) IgER-CL (IgER-crosslinking; AER-37, 0.2 µg/mL). B–D show the net histamine release, i.e.,
stimulated release–spontaneous release (in % of total histamine). MCs from the same preparation are
shown as interconnected dots (n = 12–15), *** p < 0.001, ns, not significant.

Collectively, TSLP selectively promotes MRGPRX2-driven degranulation of human
skin MCs.
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3.2. TSLP Modestly Prolongs CD107a Exteriorization Following MRGPRX2-Triggering

Degranulation is accompanied by transient detection of granule markers at the cell
surface as a result of granule-plasma membrane fusion, whereby CD107a best distin-
guishes activated from non-activated MCs, which are visible as two clearly separated
populations [5,55] and it was also recently used to establish a pre-diagnostic MC activation
test [61].

Prior treatment with TSLP led to slightly increased expression of CD107a following SP
or c48/80 stimulation in a time-dependent fashion (Figure 2). The effect was stronger after
8 than 2 min, implying a lengthened opening of the granule, i.e., less efficient reuptake of
CD107a in the presence of TSLP (Figure 2). Note that the response to MRGPRX2 ligands is
very rapid, with CD107a exteriorization observable at 2 min and gradual reuptake within
≈ 15 to 30 min [5]. We also assessed the influence of TSLP on CD107a exteriorization
upon FcεRI aggregation. This process is much slower than upon MRGPRX2 ligation in
line with the different degranulation kinetics [24]. In two time-course series, TSLP had
little effect on CD107a+ cells at any time point tested, i.e., 15, 30, or 60 min (Figure S2).
The same was found when a larger number of MC preparations was assessed at one time
point (30 min), though there was a slight tendency to reduced CD107a-positivity elicited
via FcεRI in samples showing robust CD107a exteriorization (Figure S3). Treatment with
TSLP alone had likewise no effect on the low proportion of cells spontaneously expressing
CD107a (Figure S3).

Figure 2. TSLP modestly increases the proportion of CD107a+ cells following MRGPRX2 triggering.
MCs were pre-treated with or without TSLP (7.5 ng/mL), then stimulated with c48/80 (10 µg/mL) or
SP (30 µM) for 2 min and 8 min, respectively; CD107a cell surface expression was determined by flow-
cytometry. MCs from the same preparation are shown as interconnected dots (A,C). (A) Stimulation
by c48/80, cumulative data. (B) Representative histogram of A. (C) Stimulation by SP, cumulative
data. (D) Representative histogram of C. The data are from 8—11 independent experiments. * p < 0.05,
** p < 0.01, ns, not significant.
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Since the impact of TSLP priming seemed more robust at the level of histamine release
compared to CD107a-positive cells, we quantified the respective effect of TSLP as a fold-
change ratio and indeed found a significant difference between outcomes (Figure 3). This
underlines that the two measures grasp distinct aspects of the degranulation machinery
that do not necessarily match, even though they often correlate. As expected, no difference
was found for the FcεRI-route (Figure S4).
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Collectively, TSLP has a positive, yet modest impact on the percentage of respond-
ing MCs, while prolonged granule opening may be the reason for the more efficient
histamine release.

3.3. JNK Modestly Contributes to the Degranulation of Skin MCs in the Absence of TSLP, While
STAT5 Has no Effect

We recently elaborated that among several signaling cascades, TSLP selectively elicits
STAT5 and JNK activation in skin MCs [44]. This was verified in the present study. As in
the previous report [44], immunoblots revealed some phosphorylated (p-)STAT5 already
at baseline, which was further enhanced by TSLP (Figure S5A,B). We also found TSLP-
elicited shifts in pSTAT5 and pJNK signals by FACS (Figure S5C,D); FACS and immunoblot
findings match, as reported previously [44].

The focus of the current study was to dissect which of the cascades, if any, was required
for TSLP-supported degranulation. Prior to examining this aspect, it was mandatory to
realize whether the signaling components participate in granule discharge of skin MCs in
the absence of TSLP.

The STAT5-inhibitor Pimozide had no effect on either FcεRI- or MRGPRX2-triggered
degranulation (Figure 4). Conversely, while the JNK inhibitor SP600125 did not significantly
modify c48/80-triggered degranulation, it slightly (but significantly) inhibited SP-elicited
and FcεRI-triggered histamine liberation by a mean 21% and 16%, respectively (Figure 4).
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3.4. The Promotion of MRGPRX2 Function by TSLP Is STAT5-Dependent with Further
Contribution from JNK

We next explored whether JNK and STAT5 are implicated in TSLP’s promotion of
exocytosis. Using a three-component setting (i.e., ±inhibitor, ±TSLP, ±stimulus), we found
that this was indeed the case.

In the overall view of all groups (Figure 5A,B), TSLP-mediated enhancement (red
violin) was countered by both JNK-inhibitor (purple) and STAT5-inhibitor (black) to a
similar extent (though the STAT5-inhibitor did not quite reach significance in the SP-panel
owing to the ANOVA setting). However, since the JNK-inhibitor had a suppressive effect on
SP-triggered degranulation in the absence of TSLP (as elaborated in the previous paragraph,
Figure 4), it was important to account for this confounding effect and compare ratios of the
three inhibitor conditions (null, JNK, STAT5) in the presence/absence of TSLP. In doing
so, we found that the STAT5-inhibitor was able to completely reverse the effect of TSLP
(nearly down to a ratio of one, signifying no remaining effect of TSLP at all) (Figure 5C,D).
Interference with JNK likewise impeded TSLP from exerting its pro-secretory effect, yet
the mean ratio was still well above one, i.e., there was no complete reversal (Figure 5C,D).

3.5. STAT5 Is Indispensable for TSLP-Promoted Degranulation—Verification by RNA Interference

Exploiting our recently established Accell® mediated RNAi protocol [5,28,54], which
also efficiently ablates STAT5- and JNK upon administration of siRNAs targeting these two
components [44], we finally sought to validate the results from pharmacological inhibition
with another technique. Interestingly, the STAT5-knockdown completely reversed the effect
of TSLP, again moving the “with TSLP/without TSLP” ratio to 1, signifying no remaining
effect of TSLP (Figure 6). This was found in both independent experiments and for the two
MRGPRX2 agonists alike. Some involvement of JNK appeared likely, because the ratio was
likewise (slightly or prominently) reduced in all four combinations, yet the effects were
smaller. Taken together, the outcomes obtained with the two methods, i.e., inhibitors and
RNAi, were perfectly in accord regarding both STAT5 and JNK.
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Figure 5. TSLP support of MRGPRX2-triggered degranulation depends on STAT5 and JNK. MCs were pretreated with
the JNK inhibitor SP600125 (5 µM), the STAT5 inhibitor Pimozide (5 µM) or no inhibitor (buffer control) for 15 min, then
stimulated with TSLP (7.5 ng/mL) for 30 min. (A,B) Histamine release was assessed after further 30 min with c48/80
(10 µg/mL) or SP (30 µM), and the net release calculated. (C,D) Fold change (FC) of histamine release in the presence of
TSLP, calculated as ratio (with TSLP)/(without TSLP). The data are from 7 independent experiments. * p < 0.05, ** p < 0.01,
*** p < 0.001. In A and B, the relevant comparisons (groups: control, JNK inhibitor + TSLP, STAT5 inhibitor + TSLP) were
made against the “TSLP” group (red violin); in C and D, inhibitor groups were compared with “TSLP alone” (red violin).Cells 2021, 10, x 11 of 19 
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Figure 6. TSLP acts via STAT5 to increase MRGPRX2-mediated degranulation—verification by
RNAi-mediated knockdown. MCs were subjected to RNA interference as described in Methods for
2 d, after which time cells were pre-treated or not with TSLP (7.5 ng/mL) prior to being stimulated
by c48/80 (10 µg/mL) or SP (30 µM). Beta-hex(osaminidase) release was assessed after 30 min,
spontaneous release was assessed analogously, and the net release calculated. Results from two
separate experiments (MC cultures) are depicted as ratios “with TSLP/without TSLP” for the different
siRNAs (calculated as in Figure 5C,D). The net beta-hex release of these experiments (analogous to
Figure 5A,B) can be found as Figure S6.
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We conclude that STAT5 is absolutely essential for TSLP’s supportive effect on pseudo-
allergic degranulation, while JNK has a further contributory role.

4. Discussion

MCs adjust their responsiveness to secretory stimuli in dependence of the tissue
microenvironment, whereby modulating factors like cytokines can critically influence
their secretory competence without acting as secretagogues on their own. In doing so,
extracellular stimuli can modify the manifestation and course of MC-dependent diseases by
diminishing or increasing the concentration thresholds of triggering factors like allergens or
drugs [49,62,63]. However, interconnections between degranulation-competent receptors
and degranulation-incompetent modulatory factors are incompletely understood.

Degranulation can be efficiently elicited via two major routes in skin MCs, i.e., FcεRI
(allergic) and MRGPRX2 (pseudo-allergic/neurogenic). The former involves the high
affinity IgE receptor on the MC surface, antigen-specific IgE bound to it, and the antigen (al-
lergen) which cross-links FcεRI to start a cascade which culminates in exocytosis [1,2,25,64].
Despite the plethora of ligands that trigger pseudo-allergic responses, the culprit receptor
was discovered fairly recently as MRGPRX2 (or Mrgprb2 in the mouse) [3,7]. Agonists
encompass not only multiple cationic drugs, but also antimicrobial and neuropeptides
like Substance P (SP), making it a universally operating receptor of MCTC-type MCs [4,6].
MRGPRX2’s importance as a central signaling unit of this MC type has been widely rec-
ognized by the MC community [10–13,16,65–67]. As research into MRGPRX2 began only
recently, less is known about its modulation by autocrine and paracrine factors compared
to FcεRI.

Notwithstanding, several themes have started to emerge. In particular, MRGPRX2-
triggered degranulation can be negatively affected by cues typically supportive of the
lineage. Specifically, the dominant MC growth factor SCF interferes with the pseudo-
allergic route, while simultaneously strengthening allergic stimulation [18,19]. In addition,
IL-4 and (prolonged) IL-33 dampen MRGPRX2 functionality [19,28]. Accordingly, MRG-
PRX2 function becomes gradually diminished in the SCF-rich conditions of in vitro MC
culture, while the FcεRI-route is simultaneously boosted [19,51,52]. It is still a mystery how
MCs in the skin (and directly ex vivo) preserve their potent responsiveness to MRGPRX2
agonists but are unable to fully maintain this function in culture [19], leaving open the
question of how MRGPRX2 is supported by the skin environment, and whether mediators
exist that favor MRGPRX2- over FcεRI function.

TSLP, mostly expressed by epithelial cells, is considered a Th2-promoting master
switch implicated in Th2-dominated pathologies in the skin, lung and other organs, and is
therefore a focus in allergy-related research [35,39,68–72]. Considering this intimate relation
and the assumption of MRGPRX2 being a key structure in AD [9], we hypothesized that
TSLP may constitute one of the factors promoting the MRGPRX2 route, and found that this
is indeed the case.

MC modulating activities on maturation markers, production of cytokines and sur-
vival have previously been ascribed to TSLP [44,45,56,57,73–75]. For example, the cytokine
was shown to synergize with pro-inflammatory mediators to enhance MC production of
Th2-cytokines in the absence of FcεRI aggregation [45]. To our knowledge, no study has yet
demonstrated that TSLP can assist in granule discharge, however, which may be viewed as
the most selective MC function. In fact, focusing on FcεRI-mediated activation, Joulia et al.
found no effect of TSLP on MC secretory competence in peripheral blood derived MCs,
while the simultaneously investigated IL-33 efficiently augmented this function [60]. The
lacking effect of TSLP on allergic stimulation was reproduced in our study (Figure 1D
for histamine release, Figures S2 and S3 for CD107a upregulation after IgER-CL). The
group did not study MC activation triggered via the alternative, pseudo-allergic route.
Rönnberg et al. reported that TSLP did not induce histamine release from either CBMCs or
the ROSA MC line [75], a finding likewise duplicated in our study for skin-derived MCs
(Figure 1A for spontaneous histamine release, Figures S2 and S3 for CD107a expression).
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The discovery that TSLPR and MRGPRX2 synergize when co-activated is therefore intrigu-
ing, especially since this is found for the natural producers of MRGPRX2, and since TSLP
modifies mediator secretion in a way that differentiates between the MRGPRX2- and the
FcεRI-driven process, favoring the former.

The sensitivity of skin MCs towards TSLP can be linked to the abundant expression of
the TSLP receptor in these cells [17,42,44]. The cytokine can activate distinct cascades de-
pending on cell type, but activation of STAT5 represents the canonical and best documented
pathway in most TSLPR expressing cells [76–79]. We recently elaborated the mechanistic
underpinnings of TSLP action in skin MCs, revealing activation of STAT5 and JNK, but not
of STAT3, p38 or ERK1/2 [44]. STAT5 and JNK activation were reproduced in the current
study (Figure S5). Complementation of STAT5 by JNK was rather unexpected, because JNK
had only occasionally been found downstream of the TSLP/TSLPR axis [80]. Nonetheless,
we showed that not only STAT5 but also JNK is a crucial component of apoptosis resistance
through activation of Bcl-xl expression, which together with the parallel STAT5/Mcl-1 axis
leads to survival promotion [44].

We therefore asked whether STAT5, JNK, both or none form part of the apparatus,
by which TSLP potentiates MRGPRX2-dependent degranulation. To be able to judge,
we first needed to clarify whether JNK and STAT5 are involved in MRGPRX2-evoked
degranulation in the absence of TSLP. STAT5 perturbation had no impact on histamine
liberation whatsoever, and this applied not only to the MRGPRX2- but also to the canonical
IgER-route studied in parallel for comparison (Figure 4). Dependence on STAT5 may differ
in other MC subsets, however. In fact, STAT5 tyrosine phosphorylation was elicited down-
stream of FcεRI-aggregation in murine bone-marrow derived cultured MCs (BMcMCs) and
contributed to FcεRI-driven histamine discharge in these cells [81,82]. Moreover, though
signaling events downstream of MRGPRX2 are still rudimentarily understood, inhibition
of STAT5 by Pimozide (i.e., the same inhibitor as used in this study) did (modestly) inter-
fere with degranulation triggered by MRGPRX2 agonists in the LAD2 cell line [83]. This
further substantiates that MC heterogeneity precludes extrapolations from one MC type to
another, likely due in part to the varying levels and ratios of crucial signaling components
across MC subsets. Importantly, in skin-derived MCs, the pathophysiological responders to
MRGPRX2 ligands, STAT5 does not appear to make a meaningful contribution to granule
discharge triggered by either the allergic or the pseudo-allergic/neurogenic pathway unless
TSLP is present (as detailed below).

JNK is a well-established event in the signaling cascade downstream of FcεRI that can
be activated by multiple upstream kinases, including MKK7, PI3K or PKC [84,85]. So far,
JNK function in MCs has been chiefly associated with proliferation and survival [86,87].
In contrast, a connection with degranulation is limited at best, though one study did show
involvement in degranulation triggered via an FcγR-dependent route in the mouse [88].
JNK can influence the production of cytokines like IL-31 and TNF-α elicited by typical
MRGPRX2 agonists in LAD2, progenitor-derived MCs and rat MCs, however [89,90].
In another report, JNK was found to partake in cytokine stimulation by SP in LAD2 cells
(secondary to Go knockdown), but was explicitly not involved in degranulation [91].

Here we found a slight, yet significant effect of JNK perturbation on degranulation
triggered by SP (as well as FcεRI), yet not by c48/80 (Figure 4). In fact, despite utilizing the
same receptor, SP and c48/80 show several differences when inspected at finer resolution.
For example, SP is less potent at inducing MRGPRX2 internalization compared to c48/80 [5].
In a previous study we found that interference with JNK had no significant effect on MC
degranulation with a lower number of independent experiments [28]. This underlines
that only with highly powered experiments (n > 10), an impact of JNK can be revealed in
a statistical fashion, highlighting a rather slight and/or variable effect, which may stem,
at least in part, from MC divergence across donors [18,49,50,62]. Together, JNK seems
to (moderately) contribute to FcεRI, and especially to SP-triggered histamine release in
skin-derived MCs even in the absence of TSLP.
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In contrast to the standard situation, STAT5 activity was indispensable to the pro-
secretory function of TSLP, which was nullified by Pimozide. JNK supported STAT5,
although its inhibition had a less complete effect than that of STAT5. This was discernible
in the ratio-centered view, whereby TSLP still had a supportive (yet reduced) effect under
JNK inhibition, while this effect was virtually absent upon interference with STAT5. The
indispensable nature of STAT5 was verified following its RNAi-mediated knockdown. In
this setting TSLP was unable to increase degranulation in both independent experiments
and to both stimuli (c48/80 and SP) (Figure 6). The impact of JNK could not be fully
ascertained in the RNAi experiments due to the less potent impact of its elimination, but
promotion by TSLP was reduced rather than increased in the four experimental settings
using JNK-RNAi (two stimuli used on two MC cultures, Figure 6). This result was perfectly
in accord with the result from pharmacological inhibition (magenta versus red in Figures 5
and 6, respectively).

In summary, while STAT5 is the dominant entity, joint action of STAT5 and JNK is
likely required to optimally orchestrate the heightened secretory competence bestowed
by TSLP. Synchronized activation of STAT5 and JNK may thus mediate different TSLP
outcomes in skin MCs, including survival protection [44] and MRGPRX2-elicited granule
discharge (this study).

MRGPRX2 has moved to the center of attention not least because of the large and
still increasing number of secretagogues activating the receptor, of which many can be
linked to symptoms or diseases. These include injection-site hypersensitivity, red man
syndrome, and anaphylactic reactions to an array of drugs (e.g., muscle relaxants, opiates,
and antibiotics) [4,6,8,13,16,92]. In addition to these acute responses, MRGPRX2 also con-
tributes to complex chronic diseases of the skin, including chronic idiopathic urticaria (CIU)
and AD [4,6,9]. Regarding CIU, it was reported that urticaria patients are characterized
by overexpression of MRGPRX2 [20], while a newer publication confirmed this by also
showing enhanced skin reactivity of patients to MRGPRX2 drug ligands [93]. Importantly,
TSLP-positive cells are also increased in CIU skin [94].

As mentioned, aberrant TSLP activity is closely tied to AD, and tezepelumab (anti-
TSLP antibody) is in clinical trials for this condition [37]. Of importance, TSLP-mediated
AD is independent of adaptive immunity in mouse models but rather associated with
heightened numbers of innate immune cells, including MCs, as elaborated by several
groups harnessing T cell/B cell deficient mice along with skin-restricted TSLP overex-
pression [70–72]. Studies showing that TSLP protects against MC death [44,73] indicate
that TSLP affords direct support to MCs in these models. The current study provides
evidence that TSLP additionally promotes activation via the MRGPRX2-route. This is
notable because despite the wide appreciation of MCs’ crucial part in AD pathology, it is
still unresolved how exactly the cells are activated in skin lesions to initiate or perpetuate
the disease [48], yet evidence is growing that MRGPRX2 may constitute a missing link at
least in selected AD endotypes [9]. This is further underlined by the bidirectional crosstalk
between MCs and sensory neurons in AD pathology [95], while MRGPRX2 happens to
be the major MC-expressed receptor for neuropeptides like SP, vasoactive intestinal pep-
tide (VIP), somatostatin, cortistatin, and Pituitary adenylate cyclase-activating peptide
(PACAP) [3,6]. Our study further extends the connection between AD, TSLP and MCs. It
is also remarkable in this context that not only TSLP is enhanced in AD lesions, but so is
phosphorylated STAT5 in lesional MCs [96].

The relevance of overexpressed TSLP and deregulated MRGPRX2 activity in skin
pathologies indicates that their synergy may have important ramifications for understand-
ing and treatment of skin disorders, but also host-defenses organized by MRGPRX2 on
the other end of the spectrum. In fact, evidence is accumulating that MRGPRX2/Mrgprb2
can mobilize anti-bacterial mechanisms, e.g., after exogenous activation in the context of
Staphylococcus aureus induced dermonecrotic lesions [97] or by responding to Quorum-
sensing molecules secreted by bacteria to signal population density [98].
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It remains to be elucidated whether newly synthesized mediators like cytokines can be
elicited via MRGPRX2 in human skin MCs, i.e., whether this MC type behaves rather like
cells of the leukemic LAD2 line (efficient production of cytokines with MRGPRX2 agonists)
or rather like (peripheral-blood derived) primary MCs (cytokine production inefficient
or undetectable) [24,99]. Differences across MC subsets regarding MRGPRX2-triggered
cytokine generation were recently summarized [4]. We are currently exploring this aspect
for human cutaneous MCs, and once established, future studies will have to assess whether
TSLP can influence the other key MC function in cells from human dermis.

As of now, TSLP may be provisionally assumed to produce a hyperactive phenotype
with selectivity for MRGPRX2, as has been suggested for aberrant KIT activity (due to
SCF overexpression or the D816V mutation) in connection with allergen-dependent acti-
vation [100]. In conclusion, we show that the Th2-associated cytokine TSLP selectively
promotes MRGPRX2-dependent degranulation of skin MCs, being arguably the first cy-
tokine to favor pseudo-allergic over allergic degranulation. Mechanistically, the priming
effect depends on STAT5, supplemented by JNK activity. The relevance of TSLP, MCs
and MRGPRX2 to pruritis and atopic pathology but also host defenses indicates wide
repercussions of the identified connection.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/1/102/s1, Figure S1: TSLP priming does not change MRGPRX2 surface expression. Figure S2:
TSLP priming has no impact on the time course of CD107a exteriorization after FcεRI aggregation.
Figure S3: No effect of TSLP on the spontaneous or FcεRI-elicited proportion of CD107+ cells in
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Supplementary Materials:   

 

 
Figure S1. TSLP priming does  not  change MRGPRX2  surface  expression. MRGPRX2  expression  at  the  cell 

surface was  assessed  after  30 min with TSLP  (7.5  ng/mL)  versus medium  (control)  by  flow‐cytometry.  (A) 

Cumulative results  from n = 6  independent experiments  (cultures),  (B) Representative histograms of A, Red: 

Isotype control. Blue: MRGPRX2‐specific antibody. ns, not significant. 

 
Figure S2. TSLP priming has no impact on the time course of CD107a exteriorization after FcεRI aggregation. 

MCs were pre‐treated with or without TSLP (7.5 ng/mL), then stimulated by IgER‐CL (cross‐linking) (AER‐37, 

0.2  μg/mL)  for  the  times  indicated.  Surface CD107a  expression was detected  by  flow‐cytometry. Note  that 
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2 

CD107a exteriorization is delayed after FcεRI aggregation compared to MRGPRX2 ligation (detectable after 15–

60 min), in accordance with the two patterns of granule discharge [24]. One out of two independent experiments 

is shown. 

 
Figure S3. No effect of TSLP on the spontaneous or FcεRI‐elicited proportion of CD107+ cells in multiple MC 

preparations. MCs were pre‐treated with or without TSLP  (7.5 ng/mL),  then  stimulated by  IgER‐CL  (cross‐

linking) (AER‐37, 0.2 μg/mL) for 30 min or kept in buffer alone (spontaneous). (A) CD107a cell surface expression 

by flow‐cytometry as interconnected dots of 10–11 independent experiments. (B) Representative histograms of 

A. ns, not significant. 

 
Figure S4. Comparison between FcεRI‐triggered histamine release and CD107a exteriorization in the presence 

of TSLP. The effect of TSLP (7.5 ng/mL) was compared between histamine release (according to Figure 1) and 

CD107a exteriorization (according to Figure S3), as in Figure 3. The data are presented as fold change by TSLP 

against  control  calculated  separately  for  each  individual  experiment. Mean  ±  SD of n  =  10–14  independent 

experiments. Ns, not significant. 
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Figure S5. TSLP elicits phosphorylation of STAT5 in skin MCs. A, B) MCs were treated for 30 min with TSLP 

(7.5  ng/mL)  or without  (w/o)  TSLP.  Blots were  performed  as  described  in  the Methods  section  and  band 

intensities  quantified.  (A) Representative  experiment,  (B) Normalized  pSTAT5  signal  as mean  ±  SEM  of  5 

independent experiments. C, pSTAT5 and (D) pJNK were measured by flow‐cytometry without and after TSLP 

(7.5  ng/mL,  30  min)  treatment,  as  detailed  in  Methods.  Blue:  Isotype  control.  Red:  antibody  against 

phosphorylated signaling component (given above the histogram). Representative of n = 5. * p < 0.05. 
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Figure S6.  STAT5  is  essential  for TSLP  to  support MRGPRX2‐mediated degranulation—insights  from RNAi‐

mediated knockdown. MCs were subjected to RNA interference as described in Methods for 2 d, after which time 

cells were pre‐treated or not with TSLP (7.5 ng/mL) prior to being stimulated by c48/80 (10 μg/mL) or SP (30 μM). 

Beta‐hex(osaminidase) release was assessed after 60 min, spontaneous release was quantified analogously, and net 

release calculated. Net release values from two separate experiments (MC cultures) are depicted separately for each 

pretreatment/stimulus combination. The data served to calculate the “with TSLP/without TSLP” ratios depicted in 

Figure 6. 
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