Neuron, Volume 109

Supplemental information

Dissecting the precise nature

of itch-evoked scratching

Nivanthika K. Wimalasena, George Milner, Ricardo Silva, Cliff Vuong, Zihe Zhang, Diana M. Bautista, and Clifford J. Woolf

Supplementary Figure 1: Comparison of scratching parameters between CQ-induced and chronic neck scratching, related to Figure 5 and 7

Scratching by individual bout data from Figure 4 (n = 32 bouts for each CQ dose) are replotted alongside chronic neck scratching data from Figure 6 (n = 83 bouts). p-values were calculated using one-way ANOVA; non-significant p-values are not shown. Statistical comparisons between 1 µM and 1 mM are bolded, whereas comparisons between CQ groups and chronic scratching are shown in gray. A) Maximum speed is higher in both the 1 mM CQ and chronic scratching groups compared to 1 µM CQ (p = 0.0109, p < 0.0001, respectively) B) Mean speed is higher in chronic scratching compared to both 1 μ M and 1 mM CQ groups (p < 0.0001, p = 0.0001, respectively). C) Delta acceleration, representing the difference between the maximum and minimum acceleration, is higher in both the 1 mM CQ and chronic scratching groups compared to 1 μ M CQ (p = 0.0094, p = 0.0004, respectively). D) Mean acceleration is higher in both the 1 mM CQ and chronic scratching groups compared to 1 μ M CQ (p = 0.0074, p = 0.0002, respectively). E) Scratching frequency in Hz is higher in chronic scratching compared to both 1 μ M and 1 mM CQ groups (p < 0.0001, p = 0.0166, respectively). F) Median scratch duration in ms; calculated using the interpeak interval, is higher in chronic scratching compared to both 1 μ M and 1 mM CQ groups (p < 0.0001, p = 0.0171, respectively). G) Number of scratches per bout is higher in chronic scratching compared to both 1 μ M and 1 mM CQ groups (p = 0.0021, p = 0.007, respectively).

Supplementary Video Legends

Supplementary Video 1. High-speed video of scratching in response to 1 μ M CQ, related to Figure 3.

CQ was injected into the nape of the neck. Video recorded at 500 fps. This video corresponds to Figure 3C, E, G, I.

Supplementary Video 2. High-speed video of scratching in response to 1 mM CQ, related to Figure 3.

CQ was injected into the nape of the neck. Video recorded at 500 fps. This video corresponds to Figure 3D, F, H, J.

Supplementary Video 3. High-speed video of an instance of neck scratching, related to Figure 4.

Video recorded at 500 fps. This video corresponds to Figure **4A-I**. The animal scratches the neck four times before licking the hind paw. Forceful contact with the skin is apparent in the second and fourth scratches.

Supplementary Video 4. High-speed video of an instance of face scratching, related to Figure 4.

Video recorded at 500 fps. This video corresponds to Figure **4J-R**. The animal scratches the face 19 times before licking the hind paw.

```
function [max_s, mean_s,median_s,a_diff, mean_a, median_a, frequencyHz, Number_of_peaks,
median_interval] = statistics(data_path,filename)
% Extract, filter, and smooth trajectories
data = readtable(data_path);
x = data(:,1);
y = data(:,2);
x = table2array(x);
y = table2array(y);
y = 1000 − y; %the y axis values from image_J run from top to bottom so need to be∠
flipped
x_filt= medfilt1(x); %median filter, 1 dimensional, 3rd order
y_filt = medfilt1(y); %median filter, 1 dimensional, 3rd order
x_filt = smoothdata(x_filt,'gaussian',5); %gaussian smoothing
y_filt = smoothdata(y_filt,'gaussian',10); %gaussian smoothing
x_norm = zscore(x_filt);
y_norm = zscore(y_filt);
%% Speed calculations
delta x= diff(x norm); %differential of x norm
delta_y= diff(y_norm); %differential of y_norm
s = ((delta_x.^2 + delta_y.^2).^0.5); %pythagoras calculating speed
max_s = max(s); %maximum speed
min_s = min(s); %minimum speed
mean_s = mean(s); %mean speed
median_s = median(s); %median speed
% Acceleration calculations
accel = diff(s); %differential of speed to calculate acceleration
accel_time = size(accel);
max_a = max(accel); %maxiumum acceleration
min_a = min(accel); %minimum acceleration
a_diff = max_a - min_a; %delta acceleration, accounting for positive and negative values
mean a = mean(abs(accel)); %mean of the absolute value of acceleration
median a = median(abs(accel)); % median of the absolute value of acceleration
%% Gradient colour plot
% to generate plot of x,y trajectory overlayed with speed represented as a color gradient
totalframes = size(s);
x_norm(totalframes(1),:) = [];
y_norm(totalframes(1),:) = [];
figure; scatter(x_norm,y_norm, 75, s, 'filled');
ylim ([-2.5 2])
xlim ([-3 3.5])
hold on
plot(x_norm,y_norm,'k',...
    'LineWidth',0.01);
c = colorbar;
set(c, 'ylim', [0 0.8])
xlabel('normalized x position')
ylabel('normalized y position')
```

```
%% Plotting speed and acceleration overtime
figure;plot(s); %plotting speed
xlabel('time (frame number)');
vlabel('speed (a.u.)')
figure;plot(accel); %plotting acceleration
xlabel('time (frame number)');
ylabel('acceleration (a.u.)')
%% Peak and trough analysis on y values
%peaks
PeakCutoff = max y*0.7; %the cutoff for what is defined as a peak is taken as 70% of the ∠
maximum speed
hi= numel(findpeaks(y norm)); %How many peaks are there overall in the curve
Number_of_peaks = numel(findpeaks(y_norm,'MinPeakDistance',3,'MinPeakHeight',ビ
PeakCutoff, 'MinPeakProminence', 0.05)); % this counts peaks in the speed graph that reach∠
the threshold for height, are 6 or more points away from each other)
[peaks, x_peak] = (findpeaks(y_norm, 'MinPeakDistance', 3, 'MinPeakHeight', ∠
PeakCutoff, 'MinPeakProminence', 0.05)); % generates x and y values for peaks in a matrix
Peaks = [peaks, x_peak];
%troughs
y norminverted = -y norm; %invert the data and find peaks in order to find troughs
max_trough = max(y_norminverted); %identify maximum trough value to calculate trough⊻
cutoff
TroughCutoff = max_trough*-1.2;
[troughs, x_trough] = findpeaks(y_norminverted, 'MinPeakDistance', 3, 'MinPeakHeight', ∠
TroughCutoff, 'MinPeakProminence', 0.05); %criteria for troughs
Troughs = [-troughs, x_trough];
%% Plot peaks on y norm
frames = (1:totalframes(1));
time = frames*2; %given 500 frames per second framerate
x_peak_time = x_peak*2;
x_trough_time = x_trough*2;
figure;plot(y_norm); %plot y values over time
hold
plot(x_peak, peaks, 'o') %denote peaks
plot(x_trough,-troughs,'o') %denote troughs
xlabel('time (frame number)')
ylabel('normalized y position')
%% Caluclate interval and frequncy
median interval = median(diff(x trough)); %the median distance between troughs; useful to
use median if some peaks are not detected
frequencyHz = 1000/(median_interval*2); %frequency calulated based on the median interval
```

```
%% File open loop
    files = dir ('/Users/Nivanthika/Desktop/Matlab/data/chronic scratch only/*.csv');
    folder_location = ('/Users/Nivanthika/Desktop/Matlab/data/chronic_scratch only/');
    N = length(files);
    a = [];
    names = string.empty(0,N);
for i = 1:N
    filename = files(i).name;
    file_location = strcat(folder_location,filename);
    [max_s, mean_s,median_s, a_diff, mean_a, median_a, frequencyHz, Number_of_peaks, ∠
median_interval] = statistics(file_location,filename);
  a(:,i) = [max_s, mean_s, median_s, a_diff, mean_a, median_a, frequencyHz, ∠
Number_of_peaks, median_interval];
  filename;
  names(i) = filename;
  close all
end
split_name = split(names, '.');
new name = split name(:,:,1);
New name = string(new name);
RowNames = {'Max Speed', 'Mean Speed', 'Median Speed', 'Accel Diff', 'Mean Accel', 'Median⊿
Accel', 'Frequency (Hz)', 'Number of Peaks', 'Median Interpeak Interval'};
Names = cellstr(names);
Comparison = array2table(a, 'RowNames', RowNames);
```