Neuron, Volume 109

Supplemental information

Dissecting the precise nature

of itch-evoked scratching
Nivanthika K. Wimalasena, George Milner, Ricardo Silva, Cliff Vuong, Zihe Zhang, Diana M. Bautista, and Clifford J. Woolf

Supplementary Figure 1: Comparison of scratching parameters between CQ-induced and chronic neck scratching, related to Figure 5 and 7

Scratching by individual bout data from Figure 4 ($\mathrm{n}=32$ bouts for each CQ dose) are replotted alongside chronic neck scratching data from Figure 6 ($n=83$ bouts). p-values were calculated using one-way ANOVA; non-significant p-values are not shown. Statistical comparisons between $1 \mu \mathrm{M}$ and 1 mM are bolded, whereas comparisons between CQ groups and chronic scratching are shown in gray. A) Maximum speed is higher in both the 1 mM CQ and chronic scratching groups compared to $1 \mu \mathrm{M} C Q(p=0.0109, p<0.0001$, respectively) B) Mean speed is higher in chronic scratching compared to both $1 \mu \mathrm{M}$ and 1 mM CQ groups ($p<0.0001, \mathrm{p}=0.0001$, respectively). C) Delta acceleration, representing the difference between the maximum and minimum acceleration, is higher in both the 1 mM CQ and chronic scratching groups compared to $1 \mu \mathrm{MCQ}(p=0.0094, p=0.0004$, respectively). D) Mean acceleration is higher in both the $1 \mathrm{mM} C Q$ and chronic scratching groups compared to $1 \mu \mathrm{M} \mathrm{CQ}(p=0.0074, p=0.0002$, respectively). E) Scratching frequency in Hz is higher in chronic scratching compared to both $1 \mu \mathrm{M}$ and 1 mM CQ groups ($\mathrm{p}<0.0001, \mathrm{p}=0.0166$, respectively). F) Median scratch duration in ms; calculated using the interpeak interval, is higher in chronic scratching compared to both 1 $\mu \mathrm{M}$ and 1 mM CQ groups ($\mathrm{p}<0.0001, \mathrm{p}=0.0171$, respectively). G) Number of scratches per bout is higher in chronic scratching compared to both $1 \mu \mathrm{M}$ and 1 mM CQ groups ($p=0.0021, p=0.007$, respectively).

Supplementary Video Legends

Supplementary Video 1. High-speed video of scratching in response to $1 \mu \mathrm{M} \mathbf{C Q}$, related to Figure 3.

CQ was injected into the nape of the neck. Video recorded at 500 fps . This video corresponds to Figure 3C, E, G, I.

Supplementary Video 2. High-speed video of scratching in response to 1 mM CQ, related to Figure 3.
CQ was injected into the nape of the neck. Video recorded at 500 fps . This video corresponds to Figure 3D, F, H, J.

Supplementary Video 3. High-speed video of an instance of neck scratching, related to Figure 4.
Video recorded at 500 fps . This video corresponds to Figure 4A-I. The animal scratches the neck four times before licking the hind paw. Forceful contact with the skin is apparent in the second and fourth scratches.

Supplementary Video 4. High-speed video of an instance of face scratching, related to Figure 4.
Video recorded at 500 fps . This video corresponds to Figure 4J-R. The animal scratches the face 19 times before licking the hind paw.

```
function [max_s, mean_s,median_s,a_diff, mean_a, median_a, frequencyHz, Number_of_peaks,k
median_interval] = statistics(data_path,filename)
\%\% Extract, filter, and smooth trajectories
data \(=\) readtable(data_path);
\(x=\operatorname{data}(:, 1)\);
\(y=\operatorname{data}(:, 2)\);
x = table2array(x);
y = table2array(y);
\(y=1000-y\); \%the \(y\) axis values from image_J run from top to bottom so need to be \(\boldsymbol{\Sigma}\)
flipped
x_filt= medfilt1(x); \%median filter, 1 dimensional, 3rd order
y_filt = medfilt1(y); \%median filter, 1 dimensional, 3rd order
x_filt = smoothdata(x_filt,'gaussian',5); \%gaussian smoothing
y_filt = smoothdata(y_filt,'gaussian',10); \%gaussian smoothing
x_norm = zscore(x_filt);
y_norm = zscore(y_filt);
\%\% Speed calculations
delta_x= diff(x_norm) ; \%differential of x_norm
delta_y= diff(y_norm) ; \%differential of y_norm
\(s=\left(\overline{\left(d e l t a \_x . \wedge 2\right.}+\right.\) delta_y.^2).^0.5); \%pythagoras calculating speed
max_s = max(s); \%maximum speed
min_s = min(s); \%minimum speed
mean_s = mean(s); \%mean speed
median_s = median(s); \%median speed
\%\% Acceleration calculations
accel = diff(s); \%differential of speed to calculate acceleration
accel_time = size(accel);
max_a = max(accel); \%maxiumum acceleration
min_a = min(accel); \%minimum acceleration
a_diff = max_a - min_a; \%delta acceleration, accounting for positive and negative values
mean_a \(=\) mean(abs(accel)); \%mean of the absolute value of acceleration
median_a = median(abs(accel)); omedian of the absolute value of acceleration
\%\% Gradient colour plot
\% to generate plot of \(x, y\) trajectory overlayed with speed represented as a color gradient
totalframes = size(s);
x_norm(totalframes(1),: \(=\) [];
y_norm(totalframes(1),: \(=\) [];
figure; scatter(x_norm,y_norm, 75, s, 'filled');
\(y \lim ([-2.5\) 2])
\(x \lim ([-3\) 3.5])
hold on
plot(x_norm,y_norm,'k',..'
    'LineWidth',0.01);
c = colorbar;
set(c, 'ylim', [0 0.8])
xlabel('normalized x position')
ylabel('normalized y position')
```

```
\%\% Plotting speed and acceleration overtime
figure;plot(s); \%plotting speed
xlabel('time (frame number)');
ylabel('speed (a.u.)')
figure;plot(accel); \%plotting acceleration
xlabel('time (frame number)');
ylabel('acceleration (a.u.)')
\%\% Peak and trough analysis on y values
\%peaks
PeakCutoff = max_y*0.7; \%the cutoff for what is defined as a peak is taken as 70\% of the \(\boldsymbol{\swarrow}\)
maximum speed
hi= numel(findpeaks(y_norm)); \%How many peaks are there overall in the curve
Number_of_peaks = numel(findpeaks(y_norm,'MinPeakDistance',3,'MinPeakHeight', \(\boldsymbol{\swarrow}\)
PeakCutoff,'MinPeakProminence', 0.05)); \% this counts peaks in the speed graph that reach \(\boldsymbol{\swarrow}\)
the threshold for height, are 6 or more points away from each other)
[peaks, x_peak] = (findpeaks(y_norm,'MinPeakDistance', 3,'MinPeakHeight', \(\boldsymbol{K}\)
PeakCutof \(\bar{f},{ }^{\prime}\) MinPeakProminence', 0.05)); \%generates \(x\) and \(y\) values for peaks in a matrix
Peaks = [peaks, x_peak];
\%troughs
y_norminverted \(=-y \_n o r m\); \%invert the data and find peaks in order to find troughs
max_trough \(=\max \left(y \_\right.\)norminverted); \%identify maximum trough value to calculate trough \(\boldsymbol{\Sigma}\)
cutoff
TroughCutoff = max_trough*-1.2;
[troughs, \(x\) _trough] = findpeaks(y_norminverted, 'MinPeakDistance', 3,'MinPeakHeight', \(\boldsymbol{K}\)
TroughCutoff,'MinPeakProminence',0.05); \%criteria for troughs
Troughs = [-troughs, x_trough];
\%\% Plot peaks on y_norm
frames \(=\) (1:totalframes(1));
time \(=\) frames*2; \%given 500 frames per second framerate
x_peak_time = x_peak*2;
x_trough_time = x_trough \(* 2\);
figure;plot(y_norm); \%plot y values over time
hold
plot(x_peak,peaks,'o') \%denote peaks
plot(x_trough,-troughs,'o') \%denote troughs
xlabel('time (frame number)')
ylabel('normalized y position')
\%\% Caluclate interval and frequncy
median_interval = median(diff(x_trough)); \%the median distance between troughs; useful to \(\boldsymbol{\swarrow}\)
use median if some peaks are not detected
frequencyHz = 1000/(median_interval*2); \%frequency calulated based on the median interval
```

```
%% File open loop
    files = dir ('/Users/Nivanthika/Desktop/Matlab/data/chronic_scratch only/*.csv');
    folder_location = ('/Users/Nivanthika/Desktop/Matlab/data/chronic_scratch only/');
    N = length(files);
    a = [ ];
    names = string.empty(0,N);
for i = 1:N
    filename = files(i).name;
    file_location = strcat(folder_location,filename);
    [max_s, mean_s,median_s, a_diff, mean_a, median_a, frequencyHz, Number_of_peaks,k
median_interval] = statistics(file_location,filename);
    a(:,i) = [max_s, mean_s,median_s, a_diff, mean_a, median_a, frequencyHz,k
Number_of_peaks, median_interval];
    filename;
    names(i) = filename;
    close all
end
split_name = split(names, '.');
new_name = split_name(:,:,1);
New_name = string(new_name);
RowN
Accel', 'Frequency (Hz)', 'Number of Peaks', 'Median Interpeak Interval'};
Names = cellstr(names);
Comparison = array2table(a, 'RowNames', RowNames);
```

