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Sunburn, wound repair, and chronic renal failure with hemodialysis are usually accompanied by both
pigmentation and itching. Proopiomelanocortin-derived a-melanocyte—stimulating hormone (a.-MSH) is

produced in response to external stimuli, such as UV irradiation, and is involved in cutaneous pigmen- Q5

tation. However, it is unclear whether a-MSH is also involved in the itching. We therefore investigated
whether a-MSH elicited itch-related responses in mice. We found that an intradermal injection of «-MSH
induced hind-paw scratching, an itch-related response, in mice. The a-MSH—induced scratching was
inhibited by the p-opioid receptor antagonist naltrexone and the H; histamine receptor antagonist
terfenadine. In mast cell-deficient mice, a-MSH also elicited scratching, which was inhibited by terfe-
nadine. The immunoreactivity for L-histidine decarboxylase, a key enzyme required for the production of
histamine, histamine, and the melanocortin 1 and 5 receptors were shown in not only mast cells but also
keratinocytes in murine skin. In addition to the expression of L-histidine decarboxylase and melanocortin
1 and 5 receptors, the mouse keratinocyte cell lines (Pam212) also showed immunoreactivity for t-his-
tidine decarboxylase, histamine, and melanocortin 1 and 5 receptors. The application of a-MSH induced
the release of histamine from Pam212 cells. These findings indicate that «-MSH may play an important
role in the itching associated with pigmented cutaneous lesions and that the histamine released from
keratinocytes is involved in this a-MSH—induced itching. (Am J Pathol 2015, B : 1—8; http://dx.doi.org/
10.1016/j.ajpath.2015.07.015)

Itch is an unpleasant sensation associated with the immediate
desire to scratch, thereby making the cutaneous symptoms
worse. Several skin and general conditions are associated
with both pigmentation and itch. In addition, itch associated
with sunburn is widely recognized to be the result of an in-
flammatory reaction to UV irradiation, which increases the
amount of itch and erythema, after which the healing process
results in later skin pigmentation.' Gilchrest et al” reported
that the histamine level rises immediately after the onset of
UV-induced erythema. Itch and cutaneous pigmentation also
occur in association with chronic wounds and hypertrophic
scars. Paul’ noted that wound-related itch is more frequently
observed in patients with severe wounds. Itch may also be
caused by dry skin or serious internal diseases, such as
chronic renal failure that requires hemodialysis, which is
usually accompanied by cutaneous pigmentation. Taken

Copyright © 2015 American Society for Investigative Pathology.
Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ajpath.2015.07.015

together, it is still unclear if the underlying mechanisms of
itch in these pruritic diseases involve the interaction between
cutaneous pigmentation and itch.
a-Melanocyte—stimulating hormone (o-MSH) is one of
the neuropeptides that is generated through the cleavage of a
precursor protein called proopiomelanocortin, which is
produced through the production of corticotropin-releasing
hormone, also known as corticotropin-releasing factor, after
various stressors, such as UV irradiation.*”” «-MSH re-
ceptors are known as melanocortin receptors (MCIR,
MC3R, MC4R, and MC5R).” These receptors belong to the
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G protein-coupled receptor family, and the activation of
these receptors increases the production of cAMP.® In
addition, it was also reported that o-MSH increases
intracellular-free Ca>" concentration in human embryonic
kidney cells that express these melanocortin receptors.” In
the skin, MCIR and MC5R are mainly expressed.'” o-MSH
produced by external stimuli, such as UV irradiation, in-
duces cutaneous pigmentation through the activation of
MCIR.*"1%1 4 MSH is also increased in plasma of
patients with chronic hemodialysis'* and in epidermal ker-
atinocytes during cutaneous wound repair.> However, no
previous reports indicate whether o-MSH is also involved in
the itching that results from these factors.

Here, we investigated whether o-MSH elicited itch in
mice. Furthermore, we performed a series of experiments to
elucidate the mechanism underlying the development of
a-MSH—induced itch, focusing on the involvement of his-
tamine, which is known to play an important role in the
pathogenesis of itch.

Materials and Methods

Animals

Male ICR mice (4 to 9 weeks old), mast cell-deficient WBB6F1
W/W' (6 to 9 weeks old), and the normal littermates
(WBB6F1 ", 6 to 9 weeks old) were used in this study. These
mice were purchased from Japan SLC (Hamamatsu, Japan).
They were housed in a room with controlled temperature (21°C
to 23°C), humidity (45% to 65%), and light (7:00 AM to 7:00
PM) conditions. Food and water were available ad libitum.
Procedures for animal experiments were approved by the
Committee for Animal Experiments at the University of
Toyama.

Cell Culture and siRNA Treatment

The murine epidermal cell line (Pam212) was cultured in
Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad,
CA) supplemented with 10% fetal bovine serum, 100 U/mL
penicillin, and 100 pg/mL streptomycin under standard cell
culture conditions (37°C, 5% CO, in a humidified incubator).

In a part of the experiment, siRNA-treated cells were
used. siRNAs as a control, MCIR and MC5R, were pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). These siRNAs were transfected with Lipofectamin
RNAi MAX reagent (Life Technologies, Carlsbad, CA).
The transfection was performed according to the manu-
facturer’s protocol (Life Technologies).

Agents

a-MSH was purchased from Peptide Institute, Inc. (Osaka,
Japan). For in vivo experiments, a-MSH was dissolved in
physiologic saline and was injected intradermally in a volume
of 50 uL into the rostral skin of mice. For in vitro experiments,

a-MSH was dissolved in Opti-MEM (Thermo Fisher Scientific
Inc., Waltham, MA). Naltrexone hydrochloride (Sigma-
Aldrich, St. Louis, MO) was dissolved in physiologic saline and
injected subcutaneously 15 minutes before o-MSH injection.
Terfenadine (Sigma-Aldrich) was suspended in 0.5% sodium
carboxy methylcellulose (Wako Pure Chemical Industries, Ltd.,
Osaka, Japan) and was administered 30 minutes before a-MSH
injection. SQ 22,536 (Tocris Bioscience, Bristol, UK) and
EGTA (Dojindo Laboratories, Kumamoto, Japan) were dis-
solved in dimethyl sulfoxide and diluted with Opti-MEM (final
concentration dimethyl sulfoxide, 0.1%). These agents were
treated 30 minutes before the application of o-MSH.

Behavioral Experiments

The day before the experiment, the hair was clipped over the
rostral part of the mouse back. Before behavioral observation,
the animals were placed individually in an acrylic cage
composed of four compartments (13 x 9 x 35 cm) for at least 1
hour for acclimation. Immediately after intradermal injection,
mice were put back into the same cells, and their behaviors were
recorded with the use of a digital video camera (HDC-TM25;
Panasonic Co., Osaka, Japan) for 1 hour with personnel kept out
of the observation room. Playback of the digital recording
allowed for counting of injection site scratching by the hind
paw. The series of movements scratched several times for about
1 second were considered as one bout of scratching.*

Immunostaining

Under anesthesia with pentobarbital (80 mg/kg, intraperito-
neal), mice were transcardially perfused with phosphate-
buffered saline (PBS) and then 4% paraformaldehyde. The
skin of the rostral back was isolated, postfixed with 4%
paraformaldehyde, and immersed in 30% sucrose solution for
2 days. The tissue was embedded in Tissue-Tek O.C.T.
Compound (Sakura Fineteck Co., Ltd., Tokyo, Japan) and
kept at —80°C until use. The frozen samples were sectioned at
20 um with a cryostat (Leica, Wetzlar, Germany). In the ker-
atinocyte cell line Pam212, cells cultured on glass-bottomed
dishes were washed twice with PBS and fixed with 4% para-
formaldehyde. After being washed three times with PBS, the
sections or cells were treated with 0.3% Triton X-100 in PBS
and then with 0.25% fetal bovine serum to block nonspecific
immunoglobulin binding. The sections or cells were treated
with the first antibodies at a dilution of 1:100 at 4°C overnight;
the antibodies used were rabbit antibodies against histidine
decarboxylase (HDC; Santa Cruz Biotechnology Inc.) and
histamine (Abcam, Cambridge, UK), and goat antibodies
against MC1R, MC5R, and mast cell protease 5 (Santa Cruz
Biotechnology Inc.). After washing, the preparations were
incubated with Alexa Fluor 555-conjugated anti-goat IgG
(Life Technologies) for 1 hour at room temperature. The
sections and cells were rinsed in PBS after each treatment.
Finally, the sections and cells were counterstained with DAPIL.
Immunofluorescence was visualized with the use of a laser
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Figure 1

Log [dose], nmol/site

Scratching after intradermal injections of a-MSH in ICR mice and effects of naltrexone. Hind-paw scratching of the injection site was counted for Q11012

1 hour after intradermal injection of a-MSH or the VH1. A: Time course of scratching after VH1 (upper panel) and «-MSH (100 nmol/L per site; lower panel)
injections. B: Dose—response curve for the scratching effects of a-MSH and VH1. C: Naltrexone hydrochloride (1 mg/kg) or VH was injected subcutaneously 15
minutes before a-MSH (100 nmol/L per site) injection. The dotted line represents the average value of scratching bouts after intradermal injection of VH1.
Data are expressed as means =+ SEM. n = 2 independent experiments (B); n = 8 animals (C). *P < 0.05 versus VH (B, Holm-Sidak multiple comparisons; C,

Student’s t-test). a-MSH, a-melanocyte-stimulating hormone; VH, vehicle.

scanning confocal microscope (Leica Microsystems, Tokyo,
Japan) or a fluorescent microscope (Olympus Co., Tokyo,
Japan). After scanning, the slide glass was washed with PBS.
The skin section was stained with toluidine blue and observed
with the use of light microscope (Olympus Co.).

For a portion of the immunostaining, we used the anti-
body preabsorbed with the antigen peptides as a negative
control. The antigen peptides for HDC, MC1R, and MC5R
were purchased from Santa Cruz Biotechnology, Inc. The
preparation of the antibody preabsorbed with the antigen
peptides was performed according to the manufacturer’s
protocol (Santa Cruz Biotechnology, Inc.).

RT-PCR
Total RNA was extracted from cultured Pam212 cells.

The cell samples were lyzed with the TRIzol reagent
(Invitrogen) for RNA preparation. Total RNA (0.4 pg/sample)

A B

was used for cDNA synthesis with oligo (dT);¢ primers
and reverse transcriptase (Reverscript III; Wako Pure
Chemical Industries Ltd.). cDNA was amplified with
the use of the following primers: MCIR, 5'-GCCCAC-
ATGTTCACGAGAGC-3’ (forward) and 5-AGTTACC-
CTTTCTCCTGGCCC-3' (reverse); MC5R, 5'-AAATCC-
GATGCCAAGAAGTG-3' (forward) and 5-GGTAGCG-
CAAGGCATAGAAG-3' (reverse); HDC, 5'-AGCACAA-
GCTGTCGTCCTTT-3' (forward) and 5-GTGGATCAC-
GAAGACCCTGT-3' (reverse). Glyceraldehyde 3-phosphate
dehydrogenase was used as a positive control. The primers
used for glyceraldehyde 3-phosphate dehydrogenase were
5'-ACCCAGAAGACTGTGGAT-3' (forward) and 5'-TCG-
TTGAGGGCAATGCCA-3' (reverse). The cycling conditions
were 5 minutes at 94°C, 35 cycles of 30 seconds at 94°C, 30
seconds at 58°C, and 30 seconds at 72°C, and 7 minutes at
72°C. After PCR, the amplified products were analyzed by 2%
agarose gel electrophoresis.
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Figure 2

Effect of terfenadine and mast-cell deficiency on a-MSH—induced scratching. Terfenadine (30 mg/kg) or VH1 was injected orally 30 minutes

before a-MSH (100 nmol/L per site) injection. Hind-paw scratching of the injection site was counted for 1 hour after intradermal injection of a-MSH or VH2. A:
Effect of terfenadine on a-MSH—induced scratching in ICR mice. The dotted line represents the average value of scratching bouts after intradermal injection of
VH2. B: Effect of mast-cell deficiency on a-MSH—induced scratching in mast cell-deficient WBB6F1-W/W" mice and in normal littermates (WBB6F17/™). C:
Effect of terfenadine on a-MSH—induced scratching in WBB6F1-W/W" and WBB6F1*/* mice. Data are expressed as means + SEM. n = 7 to 8 animals.
*P < 0.05 versus VH1 or VH2 (A, Student’s t-test; B and C, Holm-Sidak multiple comparisons). a-MSH, a-melanocyte-stimulating hormone; VH, vehicle.
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A

HDC (preabsorbed)

MC5R (preabsorbed)

Figure 3

Toluidine Blue

A RN

DAPI

Histamine

Cutaneous distribution of HDC, melanocortin receptors (MC1R and MC5R), and histamine in ICR mice. A: Center panels show HDC and melanocortin

receptors (MC1R and MC5R) immunoreactivity in the skin of the ICR mice. Left panels show the images obtained with the antibody preabsorbed with the antigens
for HDC, MC1R, and MC5R (negative control). Right panels show the light microscopy images for toluidine blue staining. B: Expression of histamine (green) and
mast cell protease 5 (red). Arrow shows mast cell. Scale bar = 100 um. HDC, histidine decarboxylase; MC1R, melanocortin 1 receptor; MC5R, melanocortin 5

receptor.

Western Blot Analysis

Proteins were extracted from cultured Pam212 cells with a
lysis buffer [20 mm Tris-HCI (pH 7.5), 137 mm NaCl, 1%
NP-40, 10% glycerol, 1 mm phenylmethyl sulfonyl fluo-
ride, 10 pg/mL aprotinin, and 1 pg/mL leupeptin]. The
protein lysates were denatured at 95°C for 5 minutes and
were applied to an SDS-polyacrylamide gel for electro-
phoresis and transferred to nitrocellulose membranes.
After blocking with 1% skim milk in PBS that contained
0.1% Tween 20, the membrane was reacted with goat
polyclonal anti-HDC, anti-MCIR, anti-MC5R, and
anti—B-actin antibodies (dilution 1:1000 each), respec-
tively, overnight at 4°C. After washing with PBS that
contained 0.1% Tween 20, the membranes were incubated
with horseradish peroxidase-labeled donkey anti-goat IgG
antibody (dilution 1:1000; Bethyl Laboratories, Inc.,
Montgomery, TX) for 2 hours at room temperature. These
membranes were then scanned with the lumino image
analyzer Image Quant LAS-4000 (Fujifilm, Tokyo, Japan).

Measurement of Histamine Released from Murine Cell
Line Pam212

a-MSH (200 pmol/L) was dissolved in Opti-MEM, as a re-
action medium, and applied to the cells. Five and 10 minutes
later, the reaction medium was collected. In the experiments
that used the cells treated with siRNA, SQ 22,536, or EGTA,

the reaction medium was collected 5 minutes after a-MSH
application. The concentration of the released histamine was
measured with the histamine enzyme immunoassay Kkit
(Bertin Pharma, Montigny-le-Bretonneux, France) according
to the manufacturer’s recommendation. The protein of
Pam?212 cells was extracted by the application of 1% Triton
X-100, and the concentration was measured by using protein
assay reagent (Bio-Rad, Hercules, CA). The released hista-
mine concentration in the reaction medium was normalized
to the protein concentration of the Pam212 cells.

Statistical Analysis

All values are expressed as the means + SEM of the
respective test or control group. Statistical significance was
evaluated with either Student’s #-test or Holm-Sidak multiple
comparisons. P < 0.05 was considered significant.

Results
Behavioral Effects of a-MSH

An intradermal injection of o-MSH (100 nmol/L per site)
induced marked scratching of the injected site by the hind
paws compared with the vehicle. The effect peaked in the
initial 10-minute period and almost completely subsided
within 60 minutes (Figure 1A). The administration of a-MSH
at intradermal doses of 10 to 100 nmol per site elicited
scratching in a dose-dependent manner (Figure 1B). In the
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Figure 4  Expression of HDC, MCIR, MC5R, and
histamine in murine keratinocyte cell line Pam212
and release of histamine after o-MSH treatment. A:
HDC, MC1R, MC5R, and histamine immunoreactivity
in Pam212 cells. B and C: RT-PCR and a Western blot
analysis show the expression of HDC MC1R, and
MC5R in the Pam212 cells. The arrowhead indicates
the protein levels of MC1R (34 kDa), MC5R (43 kDa),
and HDC (74 and 54 kDa). D: Release of histamine
after 200 pmol/L o-MSH treatment. Data are
expressed as means + SEM. n = 2 independent
experiments (B—D); n = 6 wells (D). *P < 0.05
versus culture medium only (Holm—Sidak multiple
comparisons). Scale bar = 20 um. GAPDH, glycer-
aldehyde 3-phosphate dehydrogenase; HDC, histi-
dine decarboxylase; MC1R, melanocortin 1 receptor;
MC5R, melanocortin 5 receptor; o-MSH, a-melano-
cyte-stimulating hormone.
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following in vivo experiments, a dose of 100 nmol per site of
a-MSH was used.

Effects of Various Agents on the a-MSH—Induced
Scratching

Subcutaneous pretreatment with 1 mg/kg selective p-opioid
receptor antagonist, naltrexone hydrochloride,'” inhibited the
a-MSH—induced scratching (Figure 1C). Oral pretreatment
with 30 mg/kg H, histamine receptor antagonist, terfenadine, '®
also suppressed the a-MSH—induced scratching (Figure 2A).

Effects of Mast Cell Deficiency on the a-MSH—Induced
Scratching

An intradermal injection of «a-MSH elicited significant
scratching in both mast cell-deficient mice (WBB6F1 W/W")
and their normal littermates (WBB6F1 ™), compared with
vehicle-injected mice (Figure 2B). The number of scratches
was almost the same between these mice. Interestingly, the
administration of 30 mg/kg H; histamine receptor antagonist
terfenadine significantly inhibited the o-MSH—induced
scratching in both mast cell-deficient mice (WBB6F1 W/W")
and their normal littermates (WBB6F1 ™), compared with
vehicle-treated mice (Figure 2C).

Distribution of HDC, MC1R, MC5R, and Histamine in
Mouse Skin

Immunohistochemical staining showed that HDC, MCIR, and
MCS5R were mainly expressed in both epidermal keratinocytes
and dermal cells stained with toluidine blue (Figure 3A).

The American Journal of Pathology m ajp.amjpathol.org

Histamine was similarly expressed in both epidermal kerati-
nocytes and dermal cells seen by the immunoreactivity of mast
cell protease 5 (Figure 3B).

Expression of HDC, MC1R, MC5R, and Histamine in the
Mouse Keratinocyte Cell Line Pam212 Cells

Pam212 cells showed immunoreactivity for HDC, MCIR,

MCS5R, and histamine (Figure 4A). In addition, RT-PCR and [F4]

Western blot analysis also showed the expression of HDC,
MCIR, and MC5R in Pam212 cells (Figure 4, B and C).

Release of Histamine from Pam212 Cells Stimulated
with o-MSH

In the present in vivo study, an intradermal injection of a-
MSH (100 nmol/50 pL. = 2 mmol/L) elicited scratching
(Figure 1A). However, a-MSH (10 nmol/50 pL. = 200
pmol/L) led to a slight, but not significant, increase in
scratching, compared with the vehicle-injected group
(Figure 1B). Because o-MSH acts directly on the cells
in vitro, «-MSH was administered at a final concentration
of 200 umol/L in these cell culture studies. Because
a-MSH—induced scratching was observed mainly during
the initial 10-minute period, the release of histamine was
measured for 10 minutes after o-MSH stimulation. Treat-
ment with 200 pmol/L o-MSH significantly increased the
concentration of histamine in the culture medium 5 and 10
minutes after the application of a-MSH, compared with the
medium of cells treated without a-MSH (Figure 4D). The
effect peaked after the initial 5-minute period (Figure 4D).
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siRNA for MC1R or MC5R or nonspecific control siRNA. B: SQ 22,536 (100
umol/L), EGTA (1 mmol/L), or VH (0.1% dimethyl sulfoxide) was treated 30
minutes before 200 pmol/L a-MSH application. The amount of histamine in
the reaction medium was measured 5 minutes after 200 pmol/L o-MSH
application with the use of an enzyme immunoassay kit and was normalized
to the amount of protein in the cells. Data are expressed as means & SEM.
n = 6 wells. *P < 0.05 versus the reaction medium that contained the
Pam212 cells treated with control siRNA or VH in the Pam212 cells;
P < 0.05 versus the reaction medium applied with o-MSH in the Pam212
cells treated with control siRNA or VH (Holm—Sidak multiple comparisons).
MC1R, melanocortin 1 receptor; MC5R, melanocortin 5 receptor; o-MSH,
a-melanocyte-stimulating hormone; VH, vehicle.

a-MSH did not elicit the release of histamine in the cells
treated with MCIR or MC5R siRNA (Figure 5A and
Supplemental Figure S1). In addition, 100 pmol/L adenylyl
cyclase inhibitor SQ 22,536'" (Supplemental Figure S2')
and 1 mmol/L calcium chelator EGTA'” also inhibited the
release of histamine induced by o-MSH (Figure 5B).

Discussion

Intradermal injections of a-MSH into the rostral part of the
skin elicited hind-paw scratching of the injection site in
mice. The a-MSH—induced scratching was inhibited by
treatment with the p-opioid receptor antagonist naltrexone. It

was reported that p-opioid receptor antagonists inhibit
scratching induced by pruritogens' >’ ** and dermatoses in
rodents'®**~*° and itching and scratching in humans with
pruritic diseases.”® >’ However, p-opioid receptor antago-
nists attenuate itch-related but not pain-related behavior.” "
Taking into account these findings in humans and rodents,
our results showing that the action of a-MSH was inhibited
by p-opioid receptor antagonists are consistent with the idea
that a-MSH—induced scratching is because of pruritogenic,
but not algesiogenic, stimulation of the treated skin.

In this study, we also found that a-MSH—induced scratching
was inhibited partially, but significantly, by treatment with a H;
histamine receptor antagonist terfenadine at a dose that almost
completely inhibited the histamine-induced scratching,'® sug-
gesting that histamine is involved in o-MSH—induced
scratching. a-MSH is involved in the pigmentation due to
sunburn,lo’” hemodialysis,'2 and wound repair.'3 Antihista-
mines are effective for treating pruritus in the patients with the

. . . 13435
above-mentioned causes of pigmentation. > Therefore, Q9

these reports support our findings.

It is well known that histamine is mainly produced by
the mast cells in skin. However, in this study, o-MSH
elicited scratching in both mast cell-deficient mice and
their normal littermates. Interestingly, terfenadine inhibi-
ted the a-MSH—induced scratching in both the mast cell-
deficient mice and normal littermates. Taken together,
these findings suggest that histamine is involved in the
a-MSH—induced scratching, and mast cells may not
contribute to the release of histamine involved in this
scratching.

HDC is a key enzyme in the biosynthesis of histamine.
In this study, we observed the immunoreactivity to HDC
and histamine not only in mast cells but also keratinocytes
in mouse skin. In addition, the mouse keratinocyte cell line,
Pam212, also showed the immunoreactivity to HDC and
histamine. Human epidermal cells and keratinocytes also
express HDC.”"** We also detected low (54 kDa)- and high
(74 kDa)-molecular weight protein bands of HDC in the
Pam212 cells; 74-kDa HDC is a precursor protein that
exhibits a low enzyme activity. Furthermore, 74-kDa HDC
is post-translationally cleaved to a 53- to 55-kDa species,
and histamine is synthesized mainly by a 53- to 55-kDa
HDC.’® Treatment with o-MSH induced histamine release
from Pam212 cells. Thus, keratinocytes may play an important
role in the production of histamine, and this appears to be
related to the o-MSH—induced scratching.

In mast cells, histamine is stored in granules and is released
by several types of stimuli (such as immune reactions).*
Macrophages also express HDC and spontaneously release
histamine without it being stored intracellularly (these cells
do not contain histamine-storing granules).”*’ Because
keratinocytes also do not have histamine-storing granules,
the histamine would be released immediately after its
biosynthesis. In this study, keratinocytes slightly produced
histamine. A recent report has shown histamine induces
proliferation in keratinocytes through H, histamine
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receptors.40 Thus, in a normal skin condition, histamine is
involved in the proliferation in keratinocyte as one of the
actions. However, overproduction of histamine induced by
several stimulations, such as o-MSH (present study) and
surfactant,”’ may be involved in the induction of itching.

The application of a-MSH induced the release of histamine
from the mouse keratinocytes cell line Pam212 in this study.
Pam212 cells also expressed MCIR and MCS5R receptors.
The cells treated with siRNA for MC1R and MC5R showed
no release of histamine after stimulation with o-MSH,
suggesting that at least MC1R and MC5R are involved in
a-MSH—induced histamine release. The mechanism under-
lying the production of histamine after the stimulation with
a-MSH is still unclear. Miyazaki et al*' have shown that the
activity of HDC was increased by N° 0*dibutyryl cAMP
plus Ca>* jonophore A23187. The activation of MCIR and
MCS5R receptors by a-MSH increases both the production of
cAMP?® and the intracellular-free Ca®" concentration.’ Here,
a-MSH—induced histamine release was inhibited by the
adenylyl cyclase inhibitor, which suppressed cAMP pro-
duction and a calcium chelator. Therefore, our findings
suggest that increased cAMP (Supplemental Figure S2) and
intracellular calcium levels may be involved in the produc-
tion of histamine through melanocortin receptors.

In the present study, the treatment with a H; histamine
receptor antagonist did not completely inhibit the a-MSH—
induced scratching. The cutaneous distribution of melanocortin
receptors (MC1R, MC3R, MC4R, and MC5R) for a-MSH
is not fully understood. It is known that in the mouse dorsal
root ganglia, MC1R, MC3R, and MC4R, but not MC5R,
are expressed,”” suggesting that MCIR, MC3R, and
MCA4R are presented on primary afferents. Thus, a-MSH
may act directly via primary afferents to induce itch.
Recently, it was reported that there are two main types of
itch-related primary afferents; H; histamine receptor-
expressing neurons and mas-related G-coupled protein
receptor A3-expressing neurons.”’ A future study should
be performed to determine the distribution of melanocortin
receptors in these primary afferents.

Conclusion
In conclusion, o.-MSH is an itch mediator, and the histamine

released from keratinocytes, but not mast cells, may be
involved in this a«-MSH—induced itching.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2015.07.015.
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Supplemental Figure S1  Expression of MC1R, MC5R, and GAPDH mRNA in the Pam212 cells treated with siRNA. Typical examples of the products
obtained from the reverse transcription and PCR (two examples each). The method is described in Materials and Methods. GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; MC1R, melanocortin 1 receptor; MC5R, melanocortin 5 receptor.

Supplemental Figure S2  Concentration of intracellular cAMP in the Pam212 cells. SQ 22,536 (100 mmol/L), EGTA (1 mmol/L), or VH (0.1% dimethyl
sulfoxide) was treated 30 minutes before 200 mmol/L a-MSH application. The amount of intracellular cAMP 5 minutes after a-MSH application was measured
with the enzyme immunoassay kit (GE Healthcare Bio-Sciences Co., Piscataway, NJ).'® Data are expressed as means & SEM. n = 6 wells. *P < 0.05 versus
Pam212 cells treated with VH; TP < 0.05 versus Pam212 cells treated with VH and «-MSH (Holm—Sidak multiple comparisons). a-MSH, o-melanocyte-
stimulating hormone; VH, vehicle.
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