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TRPC3 Is Dispensable for β-Alanine 
Triggered Acute Itch
Peter Dong1, Changxiong Guo2, Shengxiang Huang2,3, Minghong Ma1, Qin Liu2 & Wenqin Luo1

The detection of pruritic (itchy) stimuli is mediated by a variety of receptors and channels expressed 
by primary sensory neurons. The G protein-coupled receptor (GPCR) MRGPRD is selectively expressed 
by a subset of mouse non-peptidergic nociceptors and functions as the molecular receptor for the 
itch-inducing chemical β-alanine. However, the channels responsible for generating electrical signals 
downstream of MRGPRD remain unclear. Here, we found that a member of the canonical TRP channel 
family, TRPC3, is highly expressed in MRGPRD+ non-peptidergic nociceptors, raising the possibility of 
whether TRPC3 functions as a downstream channel in the MRGPRD signaling pathway. We tested TrpC3 
null mice for β-alanine induced itch, and found that these mice exhibit normal responses to β-alanine. 
At the cellular level, calcium influx triggered by β-alanine is also unchanged in cultured DRG neurons 
from TrpC3 null mice compared to wild type. Together, our results demonstrate that mouse TrpC3 is 
dispensable for β-alanine-induced acute itch.

Pruritoception, the sensation tuned for the detection of itchy stimuli, alerts an organism to harmful external 
threats such as parasites and toxins. Chronic itch accompanies a wide range of pathological conditions such as 
multiple sclerosis, neuropathy, and shingles, which is often resistant to treatment, and severely impacts patients’ 
quality of life1–3. Thus, understanding the molecular mechanisms underlying itch sensation is of highly relevant 
to human health.

Transient receptor potential (TRP) channels comprise a superfamily of more than 30 membrane-bound pro-
teins that form nonselective cation channels when assembled into homo- or hetero-tetramers. These TRP chan-
nels detect temperature, pH, osmolality, mechanical stimuli, and various endogenous and exogenous ligands, 
and play prominent functional roles in sensory signaling in mammals4,5. A number of these channels, including 
TRPA1, TRPM8, and TRPV1, are highly expressed by primary sensory neurons and mediate thermal, cold, pain, 
and chemical sensations6–8. Additionally, these channels can also be activated by GPCR-mediated intracellular 
signaling cascades and initiate neuronal depolarization, particularly in the context of itch sensation. For example, 
TRPA1 is suggested to function downstream of the GPCR MRGPRA3 for the detection of chloroquine induced 
itch9, and TRPV1 is proposed for the detection of histamine induced itch through the GPCR H1HR10.

In our study, we observed specific and high expression of a canonical TRP channel family member, TRPC3, 
in MRGPRD+ non-peptidergic, C fiber nociceptors. TRPC3 has previously been identified as a mediator of light 
touch in DRG neurons, although its specific expression pattern was unclear11. More recent data demonstrated a 
role for TRPC3 in vestibular functions12. In addition to these functions, TRPC3 is involved in store-operated cal-
cium entry in DRG neurons and thus is likely to function downstream of receptors that respond to inflammatory 
compounds13. Indeed, TRPC3 has been shown to be required for the cellular response to IgG immune complex 
(IgG-IC), a pain-inducing inflammatory compound that binds to the GPCR FcγRI, which in turn is coupled to 
TRPC3 through the Syk-PLC-IP3 pathway14. However, the role of TRPC3 in itch has not yet been investigated.

MRGPRD is a Gq-coupled GPCR that mediates β-alanine-induced itch sensations15,16. Unlike most other char-
acterized mouse MRGPR receptors, which are typically expressed by very restricted populations of itch-dedicated 
C-fiber sensory neurons, MRGPRD is broadly expressed by non-peptidergic C-fibers and comprise approxi-
mately 20% of total neurons in dorsal root ganglia (DRG) and trigeminal ganglia (TG). Furthermore, MRGPRD 
expression marks a unique population of polymodal sensory neurons that detect mechanical, thermal, and 
chemical stimuli. The downstream signaling mechanisms of MRGPRD remain elusive. Given the high degree of 
co-expression we found between TRPC3 and MRGPRD, we hypothesized that TRPC3 functions as a downstream 
transduction channel of MRGPRD to provide depolarizing signal, or to amplify signals.
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We tested behavioral responses of TrpC3 null mice and ex vivo physiology of TrpC3 null sensory neurons. 
Our studies show that TrpC3 null mice do not exhibit any significant defects in the detection of the pruritogen 
β-alanine. Calcium responses of non-peptidergic nociceptors to β-alanine is also unchanged in the absence of 
TRPC3, indicating that TRPC3 is dispensable in acute MRGPRD sensory signal transduction. Taken together, 
our results reveal that the deletion of TrpC3 on its own is not sufficient to significantly impact β-alanine induced 
itch responses in non-peptidergic DRG neurons.

Results
Expression of TrpC3 in dorsal root ganglion (DRG) neurons. To thoroughly characterize the expres-
sion pattern of TrpC3 in DRG neurons, we performed in situ hybridization (ISH) on thoracic and lumbar level 
DRG sections at four time points spaced a week apart from P0 to P21. We found that TrpC3 is expressed at high 
levels in both thoracic and lumbar level DRGs at the beginning of adulthood (P21), but its expression is barely 
detectable at P0, suggesting that expression of TrpC3 steadily increases during postnatal development (Fig. 1A–H).  
Since TrpC3 expression is comparable between thoracic and lumbar levels, we then used thoracic level DRGs to 
perform fluorescent in situ hybridization (FISH) for TrpC3, and FISH or immunostaining for known DRG neu-
ron markers and/or other genes implicated in sensory signaling. We quantified the percentage of TrpC3+ neurons 
that co-express the selected marker, as well as the percentage of marker+ neurons that co-express TrpC3. We 
found that the vast majority of TrpC3+ neurons are positive for peripherin (89.3%), a marker for small-diameter 
neurons (Fig. 2A–E), while almost no TrpC3+ neurons are positive for NF200 (1.5%), a marker for large-diameter 
neurons such as Aβ mechanoreceptors and proprioceptors (Fig. 2F–J). In addition, almost all TrpC3+ neurons 
co-express markers for non-peptidergic neurons such as Ret (91.7%) and Mrgprd (85.1%) (Fig. 2K–T). On the 
other hand, TrpC3+ neurons rarely express Calca (2.6%), the gene that codes for CGRP, a neuropeptide found 
largely in peptidergic neurons (Fig. 2U–Y). Interestingly, almost all Mrgprd+ neurons (93.5%) also express TrpC3 
(Fig. 2P–T).

We then performed double fluorescent ISH using RNA probes against TrpC3 and genes coding for other known 
channels and receptors that mediate sensory signaling in DRG neurons. We first looked at the expression of TrpC3 
in conjunction with other TRP channels expressed at high levels in DRG neurons. TrpC3 showed minimal over-
lap (<1%) with TrpA1, TrpM8, or TrpV1 (Fig. 3A–O). A previous publication showed that MRGPRA3, another 
member of the MRGPR family of GPCRs and the receptor for chloroquine, is coupled to TRPA1 for signaling9. 
Here, we found that most neurons which express MrgprA3 (83.0%) also express TrpC3 (Fig. 3P–T), raising the 
possibility that TRPC3 could play a previously undescribed role in this population of neurons as well. The calcium 
permeable channel P2X3, encoded by the P2rx3 gene, is an ATP receptor17,18 expressed largely in non-peptidergic 
nociceptors. We found that the majority of TrpC3+ neurons (79.2%) also express P2rx3 (Fig. 3U–Y).  
Lastly, the channel PIEZO2 has recently been implicated in the detection of mechanical force in DRG neurons as 
well as Merkel cells in the skin19,20. Little overlap is detected between TrpC3 and Piezo2 (<4%), suggesting that 
either PIEZO2 is not the channel mediating noxious mechanical force in this population of neurons, or these 
neurons express a very low level of Piezo2, which is below the detection threshold of FISH (Fig. 3Z–D’). Taken 
together, our results indicate that TrpC3 is highly and specifically expressed in MRGPRD+ and MRGPRA3+ 
non-peptidergic nociceptors.

Characterization of TrpC3 expression in somatosensory neurons of TrpC3 null mice. Given the 
high degree of overlap between TrpC3 and Mrgprd, we decided to examine the functional relationship between 
these two signaling proteins. From Dr. Barbara Miller at Penn State University, we obtained TrpC3 knockout 
(KO) mice, in which exons 7 and 8 coding for the pore domain of TRPC3, are excised (Fig. 4A)21. We generated 
an RNA probe for exons 7 and 8 of TrpC3 and performed AP colorimetric ISH on P21 thoracic DRG sections 

Figure 1. Expression of TrpC3 in thoracic and lumbar level DRG neurons. (A–D) AP colorimetric  
in situ hybridization for TrpC3 in P0–P21 WT mouse DRG thoracic sections. (E–H) AP colorimetric in 
situ hybridization for TrpC3 in P0–P21 WT mouse DRG lumbar sections. In DRGs from both levels, TrpC3 
expression is low at birth and reaches a high level at P21. DRG is outlined by the dashed black line. N = 3 mice 
for each age. Scale bar = 50 μm.
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from TrpC3 KO and heterozygous animals. We observed that the TrpC3 exon 7 and 8 signal was completely lost 
in the KO DRGs (Fig. 4B,C), but the expression of Mrgprd was unaffected (Fig. 4D,E), indicating that exons 7 
and 8 of TrpC3 are ablated in DRG neurons as expected and that this manipulation does not cause cell death of 
non-peptidergic nociceptors. In a complementary experiment, we conducted RT-PCR using DRG RNA extract of 
TrpC3 KO mice. We found that exons 7–8 but not 10–11 of TrpC3 transcript is lost in these mutant mice (Fig. 4F). 
To determine that truncated TrpC3 mRNAs could not generate functional proteins, we subcloned TrpC3 RT-PCR 
products (exons 6–11) from TrpC3 null mice and sequenced multiple clones. Interestingly, the majority (~75%) of 
TrpC3 transcripts lack exons 7–9 while ~25% of transcripts lack exons 7 and 8 (Fig. 4H). Premature stop codons 
are found shortly after exon 6 in both forms of transcripts (data not shown). Since exons 7 and 8 encode the 
channel pore domain, no functional TRPC3 protein could be made from these truncated TrpC3 transcript in this 
mutant mouse line. Finally, we examined the presence of TRPC3 protein in DRG neurons by Western blot using 
an N-terminus TRPC3 antibody (a gift from Dr. Craig Montell at UC Santa Barbara). Consistent with our mRNA 
transcript analysis, we found that a full-length band is present in WT lysates but absent in the KO DRG cell lysates 

Figure 2. Characterization of TrpC3 expression in DRG neurons. (A–J) Fluorescent in situ hybridization 
for TrpC3 and immunostaining using antibodies against peripherin (A–E) and NF200 (F–J), along with 
percentage overlap quantification, in P21 WT mouse DRG thoracic sections. (K–Y) Double fluorescent in 
situ hybridization for TrpC3 and Ret (K–O), Mrgprd (P–T), and Calca (U–Y), along with percentage overlap 
quantification, in P21 WT mouse DRG thoracic sections. TrpC3 overlaps with the small diameter DRG neuron 
marker peripherin and the non-peptidergic neuron markers Ret and Mrgprd, but shows minimal overlap with 
the large diameter DRG neuron marker NF200 and the peptidergic neuron marker Calca. N = 3 mice, Scale 
bar = 50 μm.
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(Fig. 4G). Nonspecific bands appear at other molecular weights, but signal appears to be similar across WT and 
KO lysates. Collectively, our results suggest that the truncated TRPC3 protein lacking exons 7–8 or 7–9 is either 
untranslated or degraded in the DRG neurons and that the TrpC3 KO mice we obtained are true TrpC3 null mice.

TrpC3 is not required for the development of non-peptidergic nociceptors. While many TRP 
family members have roles in detecting sensory stimuli, several canonical TRP channels are also required for 
proper nervous system development in processes such as axon growth cone guidance and neuronal survival22,23. 
Whether TRPC3 has an effect on the development of DRG neurons has not been determined. To examine the role 
of TRPC3 in DRG neuron development and somatosensation, we examined gross anatomy of non-peptidergic 
nociceptors in TrpC3 KO mice. We took advantage of the almost complete overlap between Mrgprd and TrpC3 
expression observed in the ISH data, and examined the morphologies of Mrgprd+ neurons using a mouse line in 
which an enhanced green fluorescent protein (EGFP) reporter is expressed from the Mrgprd locus (MrgprdEGFP)24. 
We generated MrgprdEGFP/+; TrpC3−/− null mice and littermate MrgprdEGFP/+ controls and performed fluorescent 
immunostaining using an anti-GFP antibody to label central and peripheral axons of Mrgprd+ DRG neurons, as 
well as an anti-CGRP antibody to label those of peptidergic nociceptors in the spinal cord and skin, which served 
as a negative control. As reported previously24, we observed that CGRP+ peptidergic nociceptor axons innervate 
lamina I of the dorsal horn while the MRGPRD+ non-peptidergic nociceptor endings innervate lamina II of the 
dorsal horn. In addition, this central projection pattern is very similar between TrpC3 KO and control animals 
in terms of shape or size (Fig. 5A,B). In the skin, non-peptidergic fibers terminate in the stratum granulosum of 
the epidermis, where they wind around keratinocytes and form a distinctive zigzag shape24. These axon endings 
lie superficial to the peptidergic axon endings, which display straight trajectories into the stratum spinosum. 
We found that termination patterns in the skin also showed no obvious differences in morphology between the 
TrpC3 KO and control animals using cross sections of glabrous (nonhairy) skin (Fig. 5C,D). Furthermore, when 
we examined skin innervation patterns over the entire epidermal surface using whole mount skin staining of gla-
brous skin from the hindpaw, our results are consistent with those above (Fig. 5E–J). These results, along with our 
ISH data showing that full expression of TrpC3 does not occur until P21 (Fig. 1A–H), and previously published 
RT-PCR results showing a sustained high level of TrpC3 expression in adult mouse DRGs25, suggest that TRPC3 
likely functions in mature non-peptidergic nociceptors but is not required for the normal development of this 
population of neurons.

The role of TRPC3 in β-alanine induced itch. TRPC3 is expressed in mature somatosensory neurons, 
but its function in itch behavior remains to be determined. MRGPRD+ non-peptidergic neurons are required to 
mediate β-alanine induced itch, and mice lacking MRGPRD no longer display an itch response to β-alanine16. 
We utilized TrpC3 KO (in C57 background) and littermate control mice to determine whether TRPC3 plays 
a role β-alanine induced itch. TrpC3 KO mice are fertile, healthy, live through adulthood, and show no differ-
ences in general behaviors compared to wild type (WT) mice (data not shown). To avoid potential confounds 
in our behavioral experiments, we conducted a rotarod test to verify that TrpC3 KO mice show no deficits in 
motor behavior. No significant difference was seen in latency to fall times between the two groups, indicating that 
TrpC3 KO mice exhibit normal motor and learning behavior (Fig. 6L). While a previous study found deficits in 
motor coordination in TrpC3 KO mice26, some recent data support our rotarod results and suggest that TrpC3 
might play more of a role in vestibular function12.We then performed itch assays in which 50 mM β-alanine was 
injected into either the cheek or back of TrpC3 KO or control mice, and found that the scratch bout number was 

Figure 3. Expression of TrpC3 in DRG neurons with regard to other channels and receptors involved in 
somatosensation. (A–D’) Double fluorescent in situ hybridization for TrpC3 and TrpA1 (A–E), TrpM8 (F–J), 
TrpV1 (K–O), MrgprA3 (P–T), P2rx3 (U–Y), and Piezo2 (Z–D’), along with percentage overlap quantification, 
in P21 WT mouse DRG thoracic sections. Few TrpC3+ DRG neurons express other TRP channel genes, as well 
as MrgprA3 and Piezo2 (although most MrgprA3 neurons express TrpC3). However, TrpC3 overlaps highly 
with P2rx3, a receptor for ATP. In some FISH, there is green nuclear background (white arrows), which can be 
differentiated from real cytosolic signals (white arrowheads). N = 3 mice. Scale bar = 50 μm.
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Figure 4. Characterization of the TrpC3 knockout mice. (A) Diagram of the TrpC3 gene, depicting the 11 
exons, of which 7–8 are excised in the KO. Also shown are the primers used in RT-PCR and colony PCR 
experiments, which include forward primers recognizing exon 6, the junction of exons 7–8, and exon 10 (6 F, 
7–8 F, 10 F) and reverse primers recognizing exons 9, 11, and the junction of exons 10–11 (9 R, 11 R, 10–11 R). 
(B and C) AP colorimetric in situ hybridization with a TrpC3 probe that recognizes exons 7 and 8 of TrpC3 
transcript in TrpC3 heterozygote and KO mouse DRG thoracic sections. Probe signal is seen in the TrpC3 
heterozygote DRG but not in the KO. (D and E) AP colorimetric in situ hybridization with an Mrgprd probe 
in TrpC3 heterozygote and KO mouse DRG thoracic sections. No obvious difference in signal is seen between 
the TrpC3 heterozygote and KO. For panel 4B–E, DRG is outlined by the dashed black line. Scale bars = 50 μm. 
(F) RT-PCR performed on RNA acutely isolated from TrpC3 heterozygote and KO DRG neurons. cDNA was 
amplified with primers specific for (from left to right): forward primer at the junction of exons 7–8 and reverse 
primer at the junction of exons 10–11 (WT: 387 bp, KO: no band), forward and reverse primers specific for 
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not significantly different between the two genotypes regardless of injection location (Fig. 6A,B). Thus, TRPC3 
does not seem to be required for β-alanine evoked itch behavior. In addition, consistent with previously pub-
lished data11, we found no differences in the ability of KO and WT animals to detect thermal and mechanical 
noxious stimuli using hot/cold plate, Hargreaves, von Frey, and pinprick tests, as well as innocuous touch using 
the dynamic paintbrush test (data not shown). As a whole, these data support the idea that TRPC3 alone is not 
required for the acute sensation of temperature or mechanical force11.

While TRPC3 does not seem to play a role in the somatosensory behaviors we tested, we wondered if a defi-
cit in sensory signaling could be detected at a cellular level. To determine the functional role TRPC3 plays in 
non-peptidergic nociceptors and whether TRPC3 functions downstream of MRGPRD signaling, we used calcium 
imaging to visualize neuronal activity in cultured DRG neurons. We dissociated DRG neurons from TrpC3−/− 
null and control mice, and stimulated the cells with 1 mM β-alanine to activate MRGPRD or with 100 mM KCl as 
a positive control to verify that the cells were functional and healthy. We found that DRG neurons from TrpC3 KO 
and control mice were equally responsive to β-alanine (Fig. 6C–J), and that there was no significant difference in 
percentage of total DRG neurons responsive to β-alanine (9.9 ± 0.8% in TrpC3 WT cells vs. 9.3 ± 1.2% in TrpC3 
KO cells; Fig. 6K). This result suggests that TRPC3 is not required for MRGPRD signaling in non-peptidergic 
neurons.

TrpC3 and TrpC6 are co-expressed in DRG neurons. Since TRPC3 is not necessary for somatosensa-
tion in DRG neurons as far as we examined, we wondered if other TRP channels are co-expressed or interact with 
TRPC3 and thus may compensate for the loss of TRPC3. TRPC6 is another member of the canonical family of 
TRP channels, and belongs to a subfamily comprising TRPC3, TRPC6, and TRPC7 based on amino acid sequence 
similarity27. TRPC3 and TRPC6 have been shown to physically interact in vitro, and evidence suggests that they 
may form heterotetramers with each other in vivo28,29. Furthermore, TrpC3/TrpC6 double KO mice show signif-
icantly reduced responses to mechanical force when measured via the von Frey and cotton bud tests11. However, 
direct evidence showing that TRPC3 and TRPC6 are expressed in the same DRG neurons is still lacking.

We performed double fluorescent ISH with RNA probes against Mrgprd and TrpC6 transcript, and found that 
TrpC6 and Mrgprd show greater than 70% overlap with each other (Fig. 7A–E). While this overlap is less than 
that observed between TrpC3 and Mrgprd, this could be explained by the generally weaker signal of TrpC6 as 
compared to that of TrpC3. Although we were unable to directly show the overlap between TrpC3 and TrpC6 due 
to a sensitivity limitation of FISH, the common high degree of overlap of TrpC6 and TrpC3 with Mrgprd suggests 
that overlap between TrpC3 and TrpC6 is high as well.

Discussion
MRGPRD+ non-peptidergic nociceptors are polymodal neurons in that they respond to a diverse range of ther-
mal, mechanical, and chemical noxious stimuli, as well as itch inducing compounds. While MRGPRD has been 
identified as the itch receptor for several chemicals including β-alanine15, no candidates for the channel down-
stream of this GPCR have emerged. Our results (Figs 2P–T, 3 and 7) demonstrate that the TRPC family member 
TRPC3 is found almost exclusively in MRGPRD+ and MRGPRA3+ non-peptidergic nociceptors. Though TRPA1 
is suggested as a downstream channel for MRGPRA3, we did not find obvious overlap between TrpC3 and TrpA1. 
This discrepancy could be due to the sensitivity of different methods (calcium imaging versus double fluorescent 
ISH) or different materials (cultured DRG neurons versus thoracic DRG sections).

It has been previously shown that TrpC3 KO animals display no deficits in mechanosensation or thermosen-
sation11. Our results (data not shown) are consistent with this previous publication. Given the high expression of 
TrpC3 in MRGPRD+ non-peptidergic nociceptors, in this study, we focused on determining functions of TRPC3 
in β-alanine induced itch. We found that TRPC3 is not required for this acute itch sensation as well (Fig. 6A,B). 
In parallel experiments, when we investigated the function of TRPC3 in MRGRPD signaling at the cellular level 
using calcium imaging, we found that there was also no difference between cultured DRG neurons from TrpC3 
KO and control mice (Fig. 6C–K). Together, these results demonstrate that TRPC3 is dispensable for MRGPRD 
signaling at the cellular and behavioral level. We speculate that compensatory mechanisms may exist in this 
population of neurons, such as TRPC6 (Fig. 7), allowing for the maintenance of normal pain and itch responses 
even when TrpC3 is ablated. A previous study utilizing double TrpC3 and TrpC6 double KO mice found that 
double null mice displayed no deficit in the Randall-Selitto test and Hargreaves’ test, but showed significantly 
reduced response to the von Frey assay and light cotton bud stimulation11. Such a deficit suggests that TRPC3 
and TRPC6 together may play a role in the sensation of mechanical force. Interestingly, at our hand, TrpC3 mice 
also showed a trend toward deficit of light mechanical force (data not shown). Thus, further studies are needed to 
determine if TRPC3 and TRPC6 function together for the sensation of itch. Intriguingly, some recently published 

exons 10 and 11 (WT: 194 bp, KO: 194 bp), and forward primer a exons 6 and reverse primer at the junction of 
exons 10–11 (WT: 783 bp, KO: 377 bp). (G) Western blotting performed on cell lysate isolated from WT and 
TrpC3 KO DRG neurons from two mice per genotype, taken after 1 and 2 minutes of exposure time. TRPC3 
protein was detected in WT DRG neuron extract using a TRPC3 N-terminus antibody, with an expected size of 
95.7 kDa. (H) Colony PCR performed on bacteria transformed with plasmids containing exon 6–11 RT-PCR 
products from a TrpC3 KO mouse. The colony PCR was conducted using primers specific for exon 6 (forward 
primer), exon 9 (reverse primer 1), and exon 11 (reverse primer 2). out of 16 colonies (25%) contain two 
bands: the smaller band (151 bp) for exons 6 and 9, and the larger band (377 bp) for exons 6, 9, 10, and 11. In 
the remaining 12 colonies (75%), one band was observed: a 293 bp PCR product for exons 6, 10, and 11. PCR 
products were sequenced to confirm their components. N = 3 mice for all experiments.
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work suggested that TRPA1 and TRPV1 may be dispensable for chloroquine- and histamine-evoked cellular 
responses30,31.

There are a few other issues that may also confound the experimental outcomes. The TrpC3 mutant mice 
used in the current study and previous publications are straight null mice. Since TrpC3 is also expressed in the 
spinal cord and the brain, it is also possible that its function in DRG neurons and somatosensation is somehow 
masked by deficits in other tissues and cells. Thus, an acute DRG neuron specific ablation of TrpC3 would be 
better to address its function. Moreover, recent large-scale analyses of DRG neurons have uncovered a vast array 
of receptors and channels expressed in non-peptidergic nociceptors32,33. TRPC3 may be one of these and other 
yet uncharacterized detectors of somatosensory stimuli in non-peptidergic nociceptors. Finally, it is possible that 
though TRPC3 is not required for acute pain and itch sensation, it may play a role in the manifestation of chronic 
pain or itch phenotypes. Indeed, recent work has demonstrated that TRPC3 lies upstream of the neuronal Fcγ 

Figure 5. Gross anatomy of non-peptidergic nociceptors in the spinal cord and skin is normal in TrpC3 null 
mice. (A and B) Immunostaining in P21 MrgprdEGFP/+ and MrgprdEGFP/+; TrpC3−/− mouse thoracic spinal 
cord sections using antibodies against CGRP and GFP. (C and D) Immunostaining in P21 MrgprdEGFP/+ and 
MrgprdEGFP/+;TrpC3−/− mouse glabrous skin cross sections using antibodies against CGRP and GFP. (E–J) 
Immunostaining in P21 MrgprdEGFP/+ and MrgprdEGFP/+;TrpC3−/− mouse whole mount glabrous skin using 
antibodies against CGRP and GFP. No obvious differences are seen in spinal cord and peripheral nerve endings 
between WT and TrpC3 KO backgrounds. N = 3 mice for each genotype. Scale bars = 50 μm.
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receptor for serum IgG immune complex14, suggesting that TRPC3 functions in hyperalgesia. TRPC3 may be 
downstream of other channels and/or receptors that are active only during pathological conditions.

Conclusions
We found that TrpC3 transcript is highly expressed in non-peptidergic nociceptors and shows a high degree of 
overlap with the itch receptor Mrgprd and MrgA3, but not with other TRP channel coding genes such as TrpA1, 
TrpM8, and TrpV1. Despite this specific pattern of expression, TRPC3 is dispensable for β-alanine induced cellu-
lar signaling and acute itch behavior via MRGPRD.

Materials and Methods
Mouse strains. Mice used at the University of Pennsylvania were raised and housed in a barrier facility in 
Hill Pavilion, with the exception of mice used for behavior experiments, which were housed in a non-barrier 
facility in the Smilow Translational Research Center. Mice used at the Washington University School of Medicine 
were bred and housed in a barrier facility at CSRB-NTA. All procedures were conducted in accordance with 
animal protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the University of 
Pennsylvania, the Animal Studies Committee of the Washington University School of Medicine, and National 
Institutes of Health guidelines. TrpC3+/− mice were provided by Dr. Barbara Miller at Penn State University21. 
MrgprdEGFP/+ mice were originally generated by Dr. Mark Zylka at the University of North Carolina24. All mice 
were backcrossed to C57Bl/6 mice spanning several generations and were maintained in a C57Bl/6 background. 
For all molecular biology, histological, and calcium imaging experiments, at least three animals per genotype 
were examined and the exact numbers are indicated in the figure legend. For behavior assays, at least five mice per 
genotype group were used for each assay and the exact numbers are indicated in the figure legend.

Figure 6. TRPC3 is not required for MRGPRD-evoked behavior or signaling at a cellular level. (A,B) Adult 
(>6 weeks old) TrpC3 KO and littermate WT control mice were scored for scratching behavior after β-alanine 
injection into the cheek and back. N = at least 7 mice per genotype for β-alanine back injection, at least 5 mice 
per genotype for β-alanine cheek injection. (C,D) Representative traces of calcium activity from littermate 
control and TrpC3−/− null cultured DRG neurons. DRG neurons of both genotypes show normal responses 
to β-alanine, while activity in response to KCl demonstrates that the neurons are healthy and viable. (E–J) 
Representative images of DRG neurons from control (E–G) and TrpC3−/− null (H–J) mice, with arrowheads 
indicating neurons that show responsiveness to both 1 mM β-alanine and 30 mM KCl. Percentages were pooled 
from results collected from 1,481 control and 990 TrpC3 KO DRG neurons from 6 animals per genotype. Scale 
bar = 50 μm. (K) Bar graph comparing the percentage of all DRG neurons that showed a positive response to 
β-alanine between littermate control and TrpC3−/− null cultured DRG neurons. No significant difference was 
seen (9.9 ± 0.8% in control DRG neurons vs. 9.3 ± 1.2% in TrpC3 KO DRG neurons; student t test). (K) Adult 
(>6 weeks old) TrpC3 KO and littermate WT control mice were scored for latency to fall off rotarod apparatus. 
N = 9 mice per genotype.
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In situ hybridization. DIG- and FITC-labeled RNA probes were synthesized using DIG and FITC RNA 
labeling kits (Roche 11277073910 and 11685619910) as described previously34. In situ hybridization was per-
formed as described previously34. Cervical, thoracic, and lumbar level spinal columns were dissected from euth-
anized wild type P21 mice and rapidly frozen in OCT (Fisher 6506), then sectioned into 20 μm cryosections. 
All steps prior to 0.2X SSC wash were carried out under RNase free conditions. 20 μM DRG and spinal cord 
cryosections were immersion-fixed in freshly made 4% PFA in PBS for 20 minutes at room temperature. Slides 
were then washed in fresh-DEPC PBS (1:1000 DEPC (Sigma D5758) in 1xPBS immediately before use), fol-
lowed by wash in DEPC-pretreated PBS (1:1000 DEPC in 1xPBS overnight (O/N), followed by autoclaving) and 
antigen retrieval. For antigen retrieval, which increases probe signal, citric acid buffer (10 mM citric acid, 0.05% 
Tween-20, pH 6.0) was boiled in a microwave, and DEPC (1:1000) was added to freshly boiled solution. Slides 
were immersed in solution in a 95 °C water bath for 20 minutes, and then allowed to cool at room temperature 
for 30 minutes. Sections were then washed in DEPC-pretreated 1xPBS (1 × 5 minutes), incubated in proteinase 
K (25 μg/mL in DEPC-pretreated H20) for five minutes, followed by washes in fresh-DEPC PBS (1 × 5 minutes) 
and DEPC-pretreated PBS (1 × 5 minutes). Sections were then acetylated at room temperature for ten minutes 
in freshly made acetylation solution (0.1 M TEA, 0.25% acetic anhydride in DEPC-pretreated H20). Slides were 
then prehybridized in hybridization buffer (50% formamide, 5X SSC, 0.3 mg/mL yeast tRNA, 100 μg/mL heparin, 
1X Denhardt’s solution, 0.1% Tween-20, 0.1% CHAPS, 5 mM EDTA in RNase-free H20) at 62 °C in a humidified 
chamber for 30 minutes. Following pre-hybridization, excess hybridization buffer was removed from slides and 
2 ng/μL of riboprobe(s) diluted in hybridization buffer was placed on the slide. Slides were incubated O/N under 
Parafilm coverslips at 62 °C. Slides were then washed in 0.2X SSC at 68 °C (1 × 15 minutes, 2 × 30 minutes).

For colorimetric reaction, slides were blocked in PBT (PBS, 0.1% Triton X-100) and 20% lamb serum at 
room temperature for one hour. Sections were then incubated with AP-conjugated anti-DIG antibody (1:1000) 
in blocking buffer O/N at 4 °C. Slides were washed in PBT (3X 10 minutes) and incubated O/N in darkness in 
alkaline phosphatase buffer (100 mM Tris pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% Tween-20, 5 mM levam-
isole, 0.34 mg/mL 4-Nitro blue tetrazolium (NBT, Roche 11383213001), 0.17 mg/mL 5-bromo-4-chloro-
3-indolyl-phosphate (BCIP, Roche 1138221001)). Following colorimetric reaction, slides were rinsed repeatedly 
in PBS and then fixed for 20 minutes in 4% PFA in PBS at room temperature. Slides were then repeatedly rinsed in 
ddH20, dried at 37 °C for 1 hour, dehydrated in xylenes (3 × 2 minutes), and coverslipped with Permount (Fisher 
SP15).

For double fluorescent ISH, slides were blocked for one hour at room temperature with 0.5% Blocking Reagent 
in PBS. Sections were incubated in anti-FITC-POD (Roche 11426346910, 1:100 in 0.5% Blocking Reagent) O/N at 
4 °C. Slides were then washed in PBT (3X 10 minutes) and incubated in 0.1% BSA in PBS for 15 minutes. FITC RNA 
probes were then developed using the TSA Plus system (Perkin Elmer NEL741001KT) by diluting fluorescein tyr-
amide into 1X amplification buffer (1:100) and incubating slides in working solution for 10–15 minutes, followed 
by washes in PBS (3X 10 minutes). Slides were then blocked in PBT containing 20% lamb serum for one hour 
at room temperature, and incubated O/N at 4 °C with AP-conjugated anti-DIG antibody (Roche 11093274910, 
1:500 in PBT and 20% lamb serum). Slides were washed in TNT (100 mM Tris–HCl, 150 mM NaCl, 0.05% 
Tween-20, pH 7.5) (3X 10 minutes), then in detection buffer (100 mM Tris–HCl, 100 mM NaCl, 10 mM MgCl2, 
pH 8.0) (2X 10 minutes). DIG-labeled probes were then developed using the HNPP/FastRed TR system (Roche 
11758888001). Sections were incubated in detection solution (10 μL HNPP stock solution, 10 μL of 25 mg/mL  
FastRed per 1 mL of detection buffer, filtered through a 0.2 μM nylon filter) (1X 90 minutes). Slides were then 
rinsed in PBS and mounted with Fluormount (Fisher OB100 01).

For FISH combined with immunofluorescence, normal hybridization procedure was followed, using 
DIG-labeled probe. After 0.2X SSC washes, sections were blocked for one hour in PBT containing 20% lamb 
serum. Sections were then incubated with AP-conjugated anti-DIG (1:500) and primary antibody (Aves NUN 
chicken anti-NF200, 1:500 and Fisher AB1530 rabbit anti-peripherin, 1:2000) at 4 °C O/N in 20% lamb serum 
blocking solution. Slides were washed in PBT (3X 10 minutes), then incubated in species appropriate Alexa 488 
conjugated secondary antibody (1:500 in 5% lamb serum in PBT) for one hour at RT. HNPP/FastRed detection 
was then performed as described above. Images for quantification were taken with a Leica DM 5000B microscope, 
while confocal images were taken with a Leica SP5 confocal microscope.

Figure 7. Expression of TrpC6 in DRG neurons compared to TrpC3. (A–E) Double fluorescent in situ 
hybridization for Mrgprd and TrpC6, along with percentage overlap quantification, in P21 WT mouse DRG 
thoracic sections.
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Immunohistochemistry. For characterization of spinal cord and skin sections, P21 mice were deeply anes-
thetized with CO2 and perfused with 4% PFA in PBS. Intact spinal cords and glabrous skin sections were dissected 
and post-fixed for 2–4 hours in 4% PFA in PBS at 4 °C, cryoprotected in 30% sucrose in PBS O/N at 4 °C, and embed-
ded in OCT. 20 μM cryosections of spinal cord and skin were washed in PBT (3X 10 minutes), and then blocked 
in PBS containing 5% lamb serum and 0.3% Triton X-100 for one hour at room temperature. Primary antibodies 
(ImmunoStar 24112 rabbit anti-CGRP, 1:1000 and Aves GFP-1020 chicken anti-GFP, 1:2000) were diluted in the 
same buffer and incubated O/N at 4 °C, then washed in PBT (3X 10 minutes). Secondary antibodies (Invitrogen 
A11039 Alexa 488 conjugated goat anti-chicken and Invitrogen A11012 Alexa 594 conjugated goat anti-rabbit) were 
incubated in blocking buffer at 1:1000 dilution for one hour at room temperature. Slides were then washed in PBT 
(3X 10 minutes) and mounted with Fluormount. Confocal images were taken with a Leica SP5 confocal microscope.

For whole mount skin staining, glabrous skin was removed from the hindpaws of P21 mice. Skin sections 
were then post-fixed for 2 hours in 4% PFA in PBS at 4 °C, rinsed in PBS (3X), and washed with PBT (PBS, 0.5% 
Triton X-100) O/N at 4 °C. Primary antibodies (same as above) were diluted in blocking solution (75% PBT, 20% 
DMSO, 5% heat inactivated goat serum), applied to skin sections, and incubated for 72 hours at room tempera-
ture. Sections were then washed with PBT (8–10 × 30 minutes), and incubated with secondary antibodies (same 
as above) diluted in blocking solution for 48 hours at room temperature. After 3X PBT rinses, sections were 
washed with PBT (8–10 × 30 minutes), and then dehydrated in serial (50, 80, 100%) MeOH/PBS dilutions, with 
hours per dilution, before dehydration in 100% MeOH O/N at room temperature. Sections were then cleared in 
1:1 MeOH and BABB (1 part benzyl alcohol, 2 parts benzyl benzoate) for 1–3 hours at room temperature before 
being transferred to 100% BABB. After clearing, skin was mounted with BABB and vacuum grease. Confocal 
images were taken with a Leica SP5 confocal microscope.

RT-PCR. Adult (>6 weeks old) mice were deeply anesthetized with CO2 and perfused with sterile ice-cold 
PBS. DRGs, spinal cord, and brain were dissected out under RNase free conditions and rapidly frozen on dry ice. 
Tissue was mechanically homogenized and RNA was isolated using the GeneJet RNA Purification Kit (Fermentas 
K0731), and cDNA was synthesized with oligo-dT primers using the SuperScript First-Strand Synthesis sys-
tem (Invitrogen 18080051). RT-PCR was performed on cDNA with primers for TrpC3 (forward primer 
CCTGGCTTTCATGATTGGCATGTTC for exon 6, forward primer GAGATCGAGGATGACAGTGATG 
for junction of exons 7–8, forward primer CGGTATGTTTTGAAAGCACAAGTAGAC for exon 10, 
reverse primer CAGTTCACCTTCATTCACCTCATC for junction of exons 10–11, reverse primer 
CACTCACATCTCAGCACACTGGGG for exon 11).

Plasmid construction and colony PCR. The sequence of transcript spanning exons 6–11 in TrpC3 KO 
mice was amplified with PCR using primers listed below. The amplified DNA was purified using the GeneJet 
PCR purification kit (Fermentas K0702) and ligated using the pGEM-T Easy Vector System (Promega A1360). 
Ligated plasmids were transformed into DH5-α competent cells, and grown overnight at 37 °C on agarose plates 
supplemented with 100 μg/mL carbenicillin. Individual colonies were then selected for colony PCR, which was 
performed with primers for TrpC3 (forward primer CCTGGCTTTCATGATTGGCATGTTC for exon 6, reverse 
primer GTGTTGGCTGATTGAGAATGCTG for exon 9, reverse primer CACTCACATCTCAGCACACTGGGG 
for exon 11). PCR products were sequenced by the Penn genomic sequencing center.

Western blotting. Adult mice were deeply anesthetized with CO2 and DRGs were dissected out and rapidly 
frozen on dry ice. DRGs were then lysed in lysis buffer (150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 
0.1% SDS, 50 mM Tris pH 8.0 in ddH20) with protease inhibitor added, for 10 minutes on wet ice. The cells were then 
centrifuged for 5 minutes at 14,000 x g at 4 °C, and the supernatant was transferred to a new tube and mixed with 2X 
Laemmli buffer (0.125 M Tris pH 6.8, 20% glycerol, 4% SDS, 0.16% bromophenol blue, 10% 2-mercaptoethanol in 
ddH20), followed by heating at 95 °C for five minutes. Samples were cooled on ice before being loaded into 4–15% 
gradient mini-Protean TGX gels (BioRad 456–1084) with an equal volume of additional 2X Laemmli buffer. Gels 
were run at 150 V in running buffer (25 mM Tris base, 190 mM glycine, 0.1% SDS, pH 8.3 in ddH20) and then trans-
ferred to nitrocellulose membrane in transfer buffer (25 mM Tris base, 190 mM glycine, 0.1% SDS, 20% methanol, 
pH 8.3 in ddH20) for one hour. The membrane was then rinsed 3X in TBST (TBS, 0.1% Tween 20) and blocked in 
blocking buffer (TBST, 5% milk) for one hour at room temperature. Primary antibody (rabbit anti-TRPC3, a gift 
from Dr. Craig Montell, UC Santa Barbara, 1:1000 dilution) in blocking buffer was then applied to the membranes, 
and the membrane was incubated at 4 °C O/N. Following 3 × 10 min washes with TBST, membranes were incubated 
in goat anti-rabbit-AP antibody (Applied Biosystems T2191, 1:5000 dilution) in blocking buffer for one hour at 
room temperature. The membranes were then washed again with TBST 3 x 10 min, and AP signal was subsequently 
detected with CDP-Star (Applied Biosystems T2218) and imaged with a Chemi-Doc system (BioRad).

DRG dissociation. DRG dissociation was performed as described previously35. In short, DRGs were dis-
sected from 3-4 week old mice and collected in ice cold DMEM/F12 (Sigma D6421) supplemented with 10% 
FBS (Gibco 1008214710) and 1X penicillin/streptomycin (Gibco 15140122) (DH10 media). Afterwards, dis-
sected DRGs were digested in enzyme solution (4 U/ml dispase II (Gibco 17105041), 342 U/ml collagenase Type I 
(Gibco 17100017) mixture in 1X Ca2+ free, Mg2+ free HBSS (Sigma H6648)) for 20 minutes at 37 °C with constant 
agitation. After digestion, the enzyme solution was aspirated and replaced with fresh DH10 media, and DRGs 
were gently titrated to free the neurons. Suspensions containing the neurons were then pelleted at 400 g for 4 min-
utes in a swinging bucket centrifuge and resuspended in DH10 media. Cells were plated onto 8 mm coverslips 
treated with 0.1 mg/mL poly-l-lysine and 20 μg/mL laminin (BD 354232) into 24-well cell culture plates, and 
bathed with DRG culture after two hours of incubation at 37 °C and 5% CO2. Cells were then cultured O/N at 
these conditions until usage for calcium imaging.
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Calcium imaging. Cultured DRG neurons from all spinal levels of twelve three-week old mice (6 TrpC3−/− 
null and 6 littermate WT control mice) were rinsed 3X with 37 °C calcium imaging buffer (130 mM NaCl, 3 mM 
KCl, 2.5 mM CaCl2, 0.6 mM MgCl2, 10 mM HEPES salt, 10 mM glucose, 1.2 mM NaHCO3 in ddH20, pH 7.45) and 
then loaded with 10 μM Fura-2AM dye (Thermo F1201) and 0.02% Pluronic F-127 (Molecular Probes P3000MP) 
in calcium imaging buffer for 25 minutes at room temperature. Cells were then rinsed 3X with calcium imaging 
buffer and incubated in the dark at room temperature before imaging. After washing, cells were imaged at 340 
and 380 nm excitation to detect intracellular calcium while challenged with 1 mM β-alanine (Sigma 146064) for 
60 seconds, then washed for 180 seconds with calcium imaging buffer, and then challenged with 100 mM KCl. 
Cells were identified as functional and healthy neurons if calcium activity was seen after depolarization was elic-
ited with KCl; cells that failed to respond to KCl were excluded from data analysis. All Fura-2 ratios were normal-
ized to the baseline using the formula F340/F380 = (Ratio)/(Ratiot=0), and a response to a stimulus was considered 
as positive if the peak ratio of a response to a stimulus was >10% above baseline. All images were acquired on a 
Nikon TI-E inverted microscope and using a Photometric HQ2 CCD camera and Nikon NIS Elements AR soft-
ware suite. Calcium responses were analyzed afterwards using the NIS Elements software. Figures were drawn 
using Microsoft Excel and GraphPad Prism. Statistical significances were calculated using GraphPad Prism. 
Graphs show mean plus standard error.

Mouse behavior. All animals used for behavior were adult (>6 weeks old) mice housed with a 12-hour 
light-dark cycle with free access to food and water. For the hot and cold plate tests, mice were placed on the metal 
surface of an IITC Hot Cold Plate Analgesia Meter, and the temperature of the plate was gradually increased or 
decreased by 6 °C/min until the mice showed clear signs of discomfort (paw licking, biting, jumping). The tem-
perature of the apparatus at this time was recorded as the pain threshold. Each animal performed 3 trials with an 
intertrial interval of at least 30 minutes, and the thermal threshold was averaged over all three trials. To measure 
radiant heat pain, the Hargreaves’ test was used. Mice were placed in a rectangular chamber on the glass surface 
of the Hargreaves’ apparatus and the radiant heat beam was applied to the hindpaw. The latency for the animal to 
withdraw from the heat source was measured, and beam intensity was adjusted so that wild type mice displayed a 
latency to withdraw within 8–12 s. Each paw of the animal was stimulated for 10 trials, with an intertrial interval 
of at least 10 minutes, and the latency to withdrawal was averaged over all 20 trials.

To measure motor activity, the rotarod test was used. Mice were first trained on the rotarod for a 120 second 
training session at a constant speed of 4 rpm. Mice were then tested a day later on the rotarod while accelerating 
the rod at an increase of 6 rpm/min. Each animal performed 3 trials with an intertrial interval of at least 15 min-
utes, and latency to fall was averaged over all three trials.

To determine sensitivity to mechanical force, the von Frey test was used. Mice were placed in a rectangular 
chamber on an elevated mesh grid and the plantar surface was stimulated with a von Frey filament, which would 
bend upon reaching the surface of the hindpaw. We used a 0.8 g filament, which was previously calibrated to 
induce a response 50% of the time in wild type mice. Each paw of the animal was stimulated for 10 trials, with an 
intertrial interval of at least 10 minutes, and the latency to withdrawal was averaged over all 20 trials. Sensitivity 
to dynamic light touch was determined using a brush test. Mice were placed in a rectangular chamber on an ele-
vated mesh grid and the plantar surface of the hindpaw was lightly stimulated with a paintbrush by stroking once 
across the paw from heel to toe. Each paw of the animal was stimulated for 10 trials, with an intertrial interval 
of at least 10 minutes, and the latency to withdrawal was averaged over all 20 trials. To determine sensitivity to 
noxious mechanical force, the pinprick test was used. Mice were placed in a rectangular chamber on an elevated 
mesh grid and the plantar surface of the hindpaw was stimulated with an Austerlitz insect pin. The pin was gently 
applied to the plantar surface of the hindpaw without penetrating the skin. Each paw of the animal was stimulated 
for 10 trials, with an intertrial interval of at least 10 minutes, and the latency to withdrawal was averaged over all 
20 trials. Sensitivity to light touch was determined using the sticky tape assay. Mice were placed in an empty cage 
and habituated for 10 minutes. A square sticker with a quarter inch length was applied to the plantar surface of the 
hindpaw and the latency to response (grooming, paw shaking, attempt to remove the sticker) was recorded. Each 
animal performed 3 trials with an intertrial interval of at least 5 minutes, and latency to response was averaged 
over all three trials.

Itch behavior was conducted as previously described16. Briefly, 50 mM β-alanine was injected intradermally 
into either the back or cheek of the mouse. Mice were first acclimated to the testing chamber for at least 20 min-
utes, then injected with 50 mM β-alanine or saline into the cheek (10 μL) or back (50 μL). Behavior was then 
observed for 20 minutes, during which the number of scratching bouts towards the area of injection was quanti-
fied. Subsequent data analysis and statistics (student’s t-test) were performed in GraphPad Prism. Graphs show 
mean plus standard error.

Data availability. The data generated and analyzed in this study are available from the corresponding 
authors on reasonable request.

References
 1. Ikoma, A., Steinhoff, M., Ständer, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).
 2. Han, L. & Dong, X. Itch mechanisms and circuits. Annu. Rev. Biophys. 43, 331–355 (2014).
 3. Bautista, D. M., Wilson, S. R. & Hoon, M. A. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci. 17, 

175–182 (2014).
 4. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).
 5. Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).
 6. Caterina, M. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).
 7. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. 

Neuron 50, 277–289 (2006).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7: 13869  | DOI:10.1038/s41598-017-12770-0

 8. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).
 9. Wilson, S. R. et al. TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat. 

Neurosci. 14, 595–602 (2011).
 10. Shim, W.-S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. 

Neurosci. 27, 2331–2337 (2007).
 11. Quick, K. et al. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair 

cells. Open Biol. 2, 120068 (2012).
 12. Sexton, J. E. et al. The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci. Lett. 610, 36–42 (2016).
 13. Alkhani, H. et al. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. 

Mol. Pain. 10, 43 (2014).
 14. Qu, L. et al. Transient receptor potential canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat 

dorsal root ganglion neurons. J. Neurosci. 32, 9554–9562 (2012).
 15. Shinohara, T. et al. Identification of a G protein-coupled receptor specifically responsive to beta-alanine. J. Biol. Chem. 279, 

23559–23564 (2004).
 16. Liu, Q. et al. Mechanisms of itch evoked by β-alanine. J. Neurosci. 32, 14532–14537 (2012).
 17. Chizh, B. A. & Illes, P. P2X receptors and nociception. Pharmacol. Rev. 53, 553–568 (2001).
 18. North, R. A. P2X3 receptors and peripheral pain mechanisms. J. Physiol. (Lond.) 554, 301–308 (2004).
 19. Ranade, S. S. et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516, 121–125 (2014).
 20. Woo, S.-H. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622-626 (2014).
 21. Hirschler-Laszkiewicz, I. et al. Trpc2 depletion protects red blood cells from oxidative stress-induced hemolysis. Exp. Hematol. 40, 

71–83 (2012).
 22. Shim, S. et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat. Neurosci. 8, 730–735 (2005).
 23. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 

894–898 (2005).
 24. Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted 

to Mrgprd. Neuron 45, 17–25 (2005).
 25. Vandewauw, I., Owsianik, G. & Voets, T. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single 

trigeminal and dorsal root ganglion level in mouse. BMC Neurosci. 14, 21 (2013).
 26. Hartmann, J. et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59, 392–398 (2008).
 27. Trebak, M., Vazquez, G., Bird, G. S. J. & Putney, J. W. The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33, 451–461 (2003).
 28. Dietrich, A., Mederos y Schnitzler, M., Kalwa, H., Storch, U. & Gudermann, T. Functional characterization and physiological 

relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedebergs Arch. Pharmacol. 371, 257–265 (2005).
 29. Bandyopadhyay, B. C. et al. Apical localization of a functional TRPC3/TRPC6-Ca2+ -signaling complex in polarized epithelial cells. 

Role in apical Ca2+ influx. J. Biol. Chem. 280, 12908–12916 (2005).
 30. Ru, F. et al. Mechanisms of pruritogen-induced activation of itch nerves in isolated mouse skin. J. Physiol. (Lond.) 595, 3651–3666 

(2017).
 31. Rossbach, K. et al. Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience 190, 89–102 (2011).
 32. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 

145–153 (2015).
 33. Chiu, I. M. et al. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular 

diversity. eLife 3, e04660 (2014).
 34. Fleming, M. S. et al. The majority of dorsal spinal cord gastrin releasing peptide is synthesized locally whereas neuromedin B is 

highly expressed in pain- and itch-sensing somatosensory neurons. Mol. Pain. 8, 52 (2012).
 35. Fleming, M. S. et al. Cis and trans RET signaling control the survival and central projection growth of rapidly adapting 

mechanoreceptors. eLife 4, e06828 (2015).

Acknowledgements
We thank Drs. Barbara Miller and Craig Montell for sharing TrpC3 KO mice and anti-TRPC3 antibody with us. 
Additionally, we thank Tim O’Brien of the Penn Behavioral Neuroscience Core and Anna Vysochan for their help 
in planning the behavior experiments. We thank members of the Liu and Luo labs for reading the manuscript 
and providing helpful comments. Q.L. is supported by the National Institutes of Health (NIH) (1R01EY024704 
and 1R01AI125743), and W.L. is supported by the NIH (R01NS083702 and R01NS094224) and the Klingenstein-
Simons Fellowship Award in the Neurosciences.

Author Contributions
P.D., C.G., Q.L., and W.L. designed the project and experiments, P.D. conducted experiments and generated Figs 
1–5 and 7, P.D., C.G., S.H. performed the experiments for Fig. 6, and P.D., C.G., M.M., Q.L., and W.L. wrote the 
manuscript. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	TRPC3 Is Dispensable for β-Alanine Triggered Acute Itch

	Results

	Expression of TrpC3 in dorsal root ganglion (DRG) neurons. 
	Characterization of TrpC3 expression in somatosensory neurons of TrpC3 null mice. 
	TrpC3 is not required for the development of non-peptidergic nociceptors. 
	The role of TRPC3 in β-alanine induced itch. 
	TrpC3 and TrpC6 are co-expressed in DRG neurons. 

	Discussion

	Conclusions

	Materials and Methods

	Mouse strains. 
	In situ hybridization. 
	Immunohistochemistry. 
	RT-PCR. 
	Plasmid construction and colony PCR. 
	Western blotting. 
	DRG dissociation. 
	Calcium imaging. 
	Mouse behavior. 
	Data availability. 

	Acknowledgements

	Figure 1 Expression of TrpC3 in thoracic and lumbar level DRG neurons.
	Figure 2 Characterization of TrpC3 expression in DRG neurons.
	Figure 3 Expression of TrpC3 in DRG neurons with regard to other channels and receptors involved in somatosensation.
	Figure 4 Characterization of the TrpC3 knockout mice.
	Figure 5 Gross anatomy of non-peptidergic nociceptors in the spinal cord and skin is normal in TrpC3 null mice.
	Figure 6 TRPC3 is not required for MRGPRD-evoked behavior or signaling at a cellular level.
	Figure 7 Expression of TrpC6 in DRG neurons compared to TrpC3.




