nature chemical biology

Article

https://doi.org/10.1038/s41589-022-01166-5

Structural basis of TRPV3 inhibition by an antagonist

In the format provided by the authors and unedited

1 Supplementary Information for

2	
2 3	Structural basis of TRPV3 inhibition by an antagonist
4	
5	Junping Fan ^{1†} , Linghan Hu ^{2†} , Zongwei Yue ^{1†} , Daohong Liao ^{3†} , Fusheng Guo ¹ , Han Ke ¹ , Daohua
6	Jiang ^{4,5} *, Yong Yang ² * & Xiaoguang Lei ¹ *
7	
8	¹ Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and
9	Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of
10	Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-
11	Tsinghua Center for Life Sciences, Peking University, Beijing, China
12	² Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology,
13	Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
14	³ longen Therapeutics Co. Ltd., Nanjing, China
15	⁴ Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
16	†These authors contributed equally.
17	⁵ University of Chinese Academy of Sciences, Beijing 100049, China
18	
19	
20	† These authors contributed equally.
21	* These authors jointly supervised this work.
22	xglei@pku.edu.cn (X.L.) yyang@pumcderm.cams.cn (Y.Y.) & jiangdh@iphy.ac.cn (D.J.)
23	

24 This file contains Supplementary Figure 1-3, Table 1-5, and Note 1.

6 Supplementary Fig. 1 | Trpvicin relieves hair loss of TRPV3 KI mice.

27 a, The representative current traces of hTRPV3-G568V mutant inhibited by increasing concentrations 28 of Trpvicin (from 1 nM to 100 µM, black bar), at ±80 mV. 10 µM RR was used to assess the whole 29 amplitudes of leak currents. b, Curve fitting of dose-dependent inhibition of hTRPV3-G568V leak 30 currents at -80 mV by Trpvicin (hTRPV3-G568V, logIC₅₀ = 1.03 ± 0.08 , n = 6 biologically independent cells). Data are presented as mean values +/- SEM. c, The current density at -80 mV of mTRPV3-31 32 WT/G568V and mTRPV3-G568V channels activated by 300 µM 2-APB, compared with mTRPV3-WT. One-way ANOVA followed by Bonferroni post-tests (mTRPV3-WT, n = 5; mTRPV3-WT/G568V, n = 5; 33 34 mTRPV3-G568V, n = 7).Data are presented as mean values +/- SEM; n.s. not significant. **d**, Trpv3+/G568V littermate mice were topically treated with 1wt% Trpvicin or vehicle once per day since 35 36 P50. During the following 40 days, the vehicle-treated mice developed shorter hair shafts (apparently 37 at P58 and P74) and cyclic hair shedding (apparently at P66 and P90). In contrast, the Trpvicin-38 treated mice showed relatively longer hair shafts and less hair shedding. The improvement in hair 39 loss by Trpvicin treatment occurred in both genders.

41 Supplementary Fig. 2 | Purification of hTRPV3-WT and hTRPV3-G573S.

42 **a-b**, Representative size-exclusion chromatography profiles of purified hTRPV3-WT (**a**) and

43 hTRPV3-G573S (b) with Superose 6 Increase 10/30 column. Peaks corresponding to target

44 proteins at 13 ml were labeled and the eluted peak was shown on SDS-PAGE. Representative

45 figures from three independent experiments were shown.

47 Supplementary Fig. 3 | Summary of the Safety-Screen 47 Panel profiling.

The interference of native ligand binding of a total of 47 targets by 10 μM Trpvicin, the inhibition (or
stimulation) was all below 40% except PDE4D2 which was inhibited by nearly 70%.

50 51

52 Supplementary Table. 1 | Results of the Safety-Screen 47 Panel profiling and summary 53

			Agor	nist	Antagonist			
	Target	Trpvicin 10 μM	Reference Compound		Trpvicin 10 μM	Reference Compound		
		Ave_%Act	EC₅₀ (nM)	Compound ID	Ave_% Inh	IC₅₀(nM) or % Inh	Compound ID	Comment
	5-HT1A	4.49%	0.56	Serotonin	24.21%	0.93	WAY-100635	
	5-HT1B	-0.34%	4.36	RU 24969	39.09%	0.42	SB-224289	
	5-HT2A	-4.12%	9.80	Serotonin	6.06%	0.47	Risperidone	
	5-HT2B	1.35%	19.88	Serotonin	-16.84%	0.23	RS-127445	
	A2A	7.48%	11.44	NECA	10.35%	231.80	ZM241385	
	alpha 1A	-6.36%	4.63	Epinephrine	-2.30%	3.73	Prazosin	
GPCRs	alpha 2A	6.90%	2.15	Epinephrine	3.24%	16.94	Yohimbine	
	β1	11.79%	0.09	Isoprenaline	-3.35%	10.28	Propranolol	
	β2	2.78%	0.01	Isoprenaline	3.31%	0.47	ICI 118551	
	CB1	0.56%	0.10	CP55940	37.92%	1.23	Rimonabant	
	CB2	-32.12%	0.46	CP55940	27.14%	89.06	SR144528	
	CCK1	-0.99%	0.40	CCK-8	4.55%	653.70	Loxiglumide	
	D1	-6.53%	1.07	Dopamine	0.12%	1.39	SCH23390	

	D2S	5.70%	2.33	Dopamine	23.05%	1.15	Amisulpride	
	ETA	-15.49%	6.64	Endothelin 2	4.23%	5.89	Macitentan	
	H1	11.06%	11.16	Histamine	0.53%	0.98	Clemastine	
	H2	0.54%	0.65	Histamine	2.24%	197.00	Nizatidine	
	op-delta	-2.77%	0.72	SNC 80	-3.35%	30.69	Naloxone	
	op-kappa	-1.88%	1.07	Dynorphin A (1- 10)	1.12%	6.42	LY2795050	
	op-mu	-0.09%	8.92	Endomorphin 1	-13.23%	4.77	Naloxone	
	M1	-4.61%	110.70	Acetylcholine	7.56%	1.72	Atropine	
	M2	3.15%	157.30	Acetylcholine	26.11%	2.22	Atropine	
	M3	-11.74%	7.86	Acetylcholine	-0.13%	4.73	Atropine	
	V1a	3.28%	1.36	Argipressin	-2.18%	44.17	Conivaptan	
Nuclear	GR	0.09%	5.88	DHAP	11.34%	6.01	Mifepristone	
receptors	AR	0.30%	2.13	DHT	19.07% 152.70		Enzalutamide	
	5-HT3A	0.00%	2921.0 0	Serotonin	-0.33%	99.19%	Ondansetron	1µM
lon Channels	nAChRα4 β2	0.29%	369.60	Acetylcholine	-1.13%	1070.00	Adiphenine	
	GABAA (α1β2γ2)	-1.92%	886.3	GABA	7.11%	4095.00	ΡΤΧ	
	NR1/NR2 B	3.79%	132.10	Glycine	9.19%	84.11%	D-AP5	100 µM
	Cav1.2	NA	NA	NA	13.31%	86.25%	Nifedipine	1 µM
	hERG	NA	NA	NA	14.81%	25.55	Cisapride	
	Nav1.5	NA	NA	NA	-0.78%	92.04%	TTX	50 µM
	IKS	NA	NA	NA	10.14%	90.63%	293B	50 µM
	COX1	NA	NA	NA	-30.96%	33.90	SC-560	
	COX2	NA	NA	NA	31.01%	55.85	Valdecoxib	
	MAO A	NA	NA	NA	19.11%	1.03	Clorgyline	
	PDE3A	NA	NA	NA	34.48%	20.48	Cilostamide	
Enzymaa	PDE4D2	NA	NA	NA	68.97%	4.62	ML-030	
Enzymes	ACHE	NA	NA	NA	-2.82%	33.52	Donepezil	
	LCK	NA	NA	NA	3.77%	0.12	TG 100572	
	ROCK1	NA	NA	NA	-6.84%	1.10	AT13148	
	INSR	NA	NA	NA	-2.27%	48.93	NVP-AEW541	
	VEGFR2	NA	NA	NA	2.25%	1.04	Nintedanib	
Troversite	5-HTT	NA	NA	NA	-3.00%	109.50	Centanafadine	
rransporte	DAT	NA	NA	NA	6.87%	103.50	Centanafadine	
rs	NET	NA	NA	NA	-10.55%	28.14	Centanafadine	

Ave_%Act, average_% activation; Ave_%Inh, average_% inhibition.

Supplementary Table. 2 | Trpvicin Pharmacokinetics parameters by LC-MS/MS

00

	t _{1/2}	\mathbf{T}_{\max}	C _{max}	AUC 0-t	AUC 0-inf	CI	Vz	MRT 0-inf	F
	h	h	ng/mL	ng/mL*h	ng/mL*h	L/h/kg	L/kg	h	%
IV (2.5mpk)	8.80	-	1523	5970	6083	0.00042	0.00547	9.28	-
SD	3.33	-	236	1047	1002	0.00007	0.00289	3.13	-
PO (10mpk)	10.96	0.139	1553	11633	12146	-	-	13.61	50.15
SD	2.65	0.096	427	1597	1525	-	_	4.94	2.25

 $\overline{t_{1/2}}$, half-life; Tmax, time of maximum plasma concentration; Cmax, maximum plasma concentration; AUC, area under the curve (measure of exposure); Vz, volume of distribution; Cl, plasma clearance;

MRT, mean residence time; F, oral bioavailability.

64 Supplementary Table. 3 | Primer sequences

Target genes	Forward	Reverse
hTRPV3	AAAACGGTCCGATGAAAGCCCACCCCAA	AAAAGCGGCCGCCACCGAGGTTTCCGGG
	GGAGATG	AATTCCTC
hTRPV3-G573S	GGTTTCCAGTCCATGAGCATGTACAGCGT	CATGACGCTGTACATGCTCATGGACTGGA
	CATG	AACC
hTRPV3-G568V	CTCTACTATACGCGGGTTTTCCAGTCCAT	GCCCATGGACTGGAAAACCCGCGTATAGT
	GGGC	AGAG
hTRPV3-A556V	TGCCTCGTGCTGGCCATGGTGCTGGGCT	ATGTTCGCCCAGCCCAGCACCATGGCCA
	GGGCGAACAT	GCACGAGGCA
hTRPV3-A560T	ATGGCCCTGGGCTGGACGAACATGCTCT	ATAGTAGAGCATGTTCGTCCAGCCCAGGG
	ACTAT	CCAT
hTRPV3-F597Y	TTGTTTGTATATATCGTGTATTTGCTTGGA	TACTCCAAATCCAAGCAAATACACGATATA
	TTTGGAGTA	ТАСАААСАА
hTRPV3-F601A	ATATCGTGTTTTTGCTTGGAGCGGGAGTA	AGGCCAAGGCTACTCCCGCTCCAAGCAA
	GCCTTGGCCT	AAACACGATAT
hTRPV3-T660A	CTGTTCCTGCTCATCGCCTATGTCATCCT	GGTGAGGATGACATAGGCGATGAGCAGG
	CACC	AACAG
hTRPV3-T665A	ATCACCTATGTCATCCTCGCCTTTGTTCTC	GTTGAGGAGGAGAACAAAGGCGAGGATG
	CTCCTCAAC	ACATAGGTGAT
hTRPV3-F666Y	ACCTATGTCATCCTCACCTATGTTCTCCTC	CATGTTGAGGAGGAGAACATAGGTGAGG
	CTCAACATG	ATGACATAGGT
hTRPV3-F666A	ACCTATGTCATCCTCACCGCTGTTCTCCT	CATGTTGAGGAGGAGAACAGCGGTGAGG
	CCTCAACATG	ATGACATAGGT
mTRPV3	GCGGAATTCAAAGGCCTACGTCGACATGA	GAACAGAACTTCCAGTGCGGCCGCCACC
	ATGCCCACTCCAAGGAGATG	GACGTTTCTGGGAATTCATC
mTRPV3-G568V	ATGCTCTACTACACGAGAGTATTCCAGTC	CATGCCCATAGACTGGAATACTCTCGTGT
	TATGGGCATG	AGTAGAGCAT
hTRPV1	AATTCAAAGGCCTACGTCGACATGAAGAA	CAGAACTTCCAGTGCGGCCGCCTTCTCCC
	ATGGAGCAGCACAGAC	CGGAAGCGGCAGGACT
mTRPV2	AATTCAAAGGCCTACGTCGACATGACTTC	CAGAACTTCCAGTGCGGCCGCGTGGGAC
	AGCCTCCAACCCCCCA	TGGAGGACCTGAAGAGG
hTRPV4	AATTCAAAGGCCTACGTCGACATGGCGGA	CAGAACTTCCAGTGCGGCCGCGAGCGGG
	TTCCAGCGAAGGCCCC	GCGTCATCAGTCCTCCA
hTRPV5	AATTCAAAGGCCTACGTCGACATGGGGG	CAGAACTTCCAGTGCGGCCGCAAAATGGT
	GTTTTCTACCTAAGGCA	AGACCTCCTCCATC
hTRPV6	AATTCAAAGGCCTACGTCGACACGGGACC	CAGAACTTCCAGTGCGGCCGCGAGAGCT
	TCTACAGGGAGACGGT	GGGAATATCAGATC
hTRPA1	CCGCTCGAGCGGATGAAGCGCAGCCTGA	TCCCCGCGGGGACTAAGGCTCAAGATGG
	GGA	TGTGTTTTTG
hTRPM8	CCGCTCGAGCGGATGTCCTTTCGGGCAG	TCCCCGCGGGGATTATTTGATTTTATTAG
	CCA	CAATCTCTTTCAGAAGACCC

Category	Parameter	Description		
Assay	Type of assay	In vitro, cell-based assay		
	Target	TRPV3 G573S mutant		
	Primary measurement	Detection of cell viability		
	Key reagents	CellTiter-Glo® Luminescent Cell Viability Assay		
		(Promega)		
	Assay protocol	https://www.promega.com.cn/-		
		/media/files/resources/protocols/technical-		
		bulletins/0/celltiter-glo-luminescent-cell-viability-assay-		
		protocol.pdf		
	Additional comments			
Library	Library size	~110,000		
	Library composition	Natural products, old drugs, molecular fragments		
	Source	BioBioPha, MedChemExprss, Chembridge		
	Additional comments			
Screen	Format	Corning® 384-well Solid White Polystyrene Microplates		
		with tissue culture treated		
	Concentration(s) tested	10 uM compound, 0.1% DMSO		
	Plate controls	0.1% DMSO		
	Reagent/ compound dispensing	CellTiter-Glo [®] Luminescent Cell Viability Assay		
	system	(Promega)/ Echo 520 Liquid Handler (Labcyte)/		
		Multidrop™ Combi Reagent Dispenser (Thermo		
		Scientific)		
	Detection instrument and software	EnVision® 2105 multimode plate reader driven by		
		EnVision Workstation software		
	Assay validation/QC	Standard deviation of controls		
	Correction factors	None		
	Normalization	None		
	Additional comments			
Post-HTS	Hit criteria	Beyond three standard deviations of controls		
analysis				
	Hit rate	1.7%		
	Additional assay(s)	Retesting of initial hits in original assay		
	Confirmation of hit purity and structure	structure and purity were verified analytically		
	Additional comments			

66 Supplementary Table .4 | Small molecule screening data

	hTRPV3 _{Apo}	hTRPV3 _{Trpvicin}	hTRPV3-G573S-	hTRPV3-G573S-
	(EMDB-33218)	(EMDB-33214)	C4 _{Trpvicin}	C2 _{Trpvicin}
	(PDB 7XJ3)	(PDB 7XJ0)	(EMDB-33217)	(EMDB-33216)
			(PDB 7XJ2)	(PDB 7XJ1)
Data collection and processing			(00.00	•
Magnification	81,000	130,000	130,00	0
Voltage (kV)	300	300	300	
Electron exposure (e–/Å2)	60	60	60	
Defocus range (µm)	-1.0 ~ -2.0	-1.2 ~ -2.2	-1.2 ~ -	-2.2
Pixel size (Å)	1.09	1.04	1.04	
Initial particle images (no.)	1,451,587	1,491,046	691,22	1
Final particle images (no.)	347,665	503,757	48,492	152,978
Symmetry imposed	C4	C4	C4	C2
Map resolution (Å)	3.54	2.53	3.64	2.93
FSC threshold	0.143	0.143	0.143	0.143
Map resolution range (Å)	3.0-5.0	2.2-4.2	3.5-5.5	2.7-4.7
Refinement				
Initial model used (PDB code)	6MHO	This study	This study	This study
Model resolution (Å)	3.58	2.68	3.77	3.05
FSC threshold	0.5	0.5	0.5	0.5
Map sharpening B factor (Å2)	-163	-110	-144	-89
Model composition				
Non-hydrogen atoms	18,493	18,791	18,438	18,910
Protein residues	2,428	2,428	2,428	2,444
Ligands	14	24	4	20
<i>B</i> factors (Å2)				
Protein	64.1	60.5	80.9	54.3
Ligand	70.5	28.4	68.4	41.7
R.m.s. deviations				
Bond lengths (Å)	0.008	0.015	0.004	0.004
Bond angles (°)	0.772	1.192	0.589	0.711
Validation				
MolProbity score	2.86	2.93	2.41	2.70
Clashscore	12	18	16	12
Poor rotamers (%)	2.5	5.1	1.4	2.6
Ramachandran plot				
Favored (%)	90.7	92.3	92.8	92.4
Allowed (%)	9.3	7.7	7.2	7.6
Disallowed (%)	0	0	0	0

68 Supplementary Table. 5 | Cryo-EM data collection, refinement and validation statistics

71 Supplementary Note 1

72 General information:

73 ¹H NMR spectra were recorded on a Varian 400 MHz spectrometer at ambient temperature with CDCl₃ 74 as the solvent unless otherwise stated. ¹³C NMR spectra were recorded on a Varian 101 MHz 75 spectrometer (with complete proton decoupling) at ambient temperature. Chemical shifts are reported in parts per million relatives to chloroform (¹H, δ 7.26; ¹³C, δ 77.00). Data for ¹H NMR are reported as 76 77 follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = 78 multiplet) and coupling constants. High-resolution mass spectra were obtained at Peking University 79 Mass Spectrometry Laboratory using a Bruker APEX Flash chromatography. The samples were analyzed by HPLC/MS on a Waters Auto Purification LC/MS system (3100 Mass Detector, 2545 80 81 Binary Gradient Module, 2767 Sample Manager, and 2998 Photodiode Array (PDA) Detector). The 82 system was equipped with a Waters C18 5µm SunFire separation column (150*4.6 mm), equilibrated with HPLC grade water (solvent A) and HPLC grade methanol (solvent B) with a flow rate of 1.0 83 84 mL/min at room temperature. Analytical thin layer chromatography was performed using 0.25 mm 85 silica gel 60-F plates. Flash chromatography was performed using 200-400 mesh silica gel. Yields 86 refer to chromatographically and spectroscopically pure materials, unless otherwise stated. All 87 reagents were used as supplied by Sigma-Aldrich, J&K and Alfa Aesar Chemicals. Methylene chloride, toluene, were distilled from calcium hydride; dimethylformamide was distilled from sodium carbonate; 88 89 ethanol was distilled from magnesium ethoxide. All reactions were carried out in oven-dried glassware 90 under an argon atmosphere unless otherwise noted. The figures are prepared by ChemDraw.

- 91
- 92 Abbreviations used
- 93 DCM Dichloromethane
- 94 TEA Triethylamine
- 95 DMAP 4-(Dimethylamino)pyridine
- 96 DMF N,N-Dimethylformamide
- 97 PE Petroleum ether
- 98 LCMS Liquid Chromatography-Mass Spectrometry

99 NMR Nuclear Magnetic Resonance

100 Detailed experimental procedures:

101 Syntheses of Trpvicin:

¹⁰² 103

104 Step 1: N-(5-iodo-4-(trifluoromethyl)thiazol-2-yl)-4,6-dimethoxypyrimidine-5-carboxamide (3)

105 106

107 To a stirred solution of 4,6-dimethoxypyrimidine-5-carboxylic acid (2.06 g, 11.22 mmol, 1.10 equiv.) 108 in DCM (20.00 mL) was added (COCI)₂ (3.89 g, 30.60 mmol, 3.00 equiv.) and DMF (10 mg) in DCM 109 (0.1 mL) in portions at 0 °C. The resulting mixture was stirred for 3 h at room temperature under argon 110 atmosphere. The resulting mixture was concentrated under reduced pressure and dissolved with 111 DCM (10 mL), which was added to a stirred solution of 5-iodo-4-(trifluoromethyl)thiazol-2-amine 2 (3.00 g, 10.20 mmol, 1.00 equiv.), TEA (4.12 g, 40.80 mmol, 4.00 equiv.) and DMAP (124.00 mg, 112 1.02 mmol, 0.10 equiv.) in DCM (30.00 mL) in portions at 0 °C. The resulting mixture was stirred for 113 114 16 h at room temperature under argon atmosphere. The reaction was diluted with DCM (100 mL), 115 washed with water (2x80 mL), dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography, 116 117 eluted with PE/EtOAc (10:1-4:1) to afford 3 (3.1 g, 66% yield) as a white solid.

118 HRMS (ESI⁺) m/e calcd for [M + H]⁺ C₁₁H₈F₃IN₄O₃S 459.9314, found 460.9406.

¹H NMR (400 MHz, Chloroform-*d*) δ 10.39 (s, 1H), 8.50 (s, 1H), 4.10 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.9, 162.4, 160.5, 159.2, 142.2, 141.8, 122.1, 119.4, 97.4,
66.6, 55.8.

122

123 Step 2: 2-(4-bromopyridin-2-yl)-2-methylpropanenitrile (5)

124

125 126

127 To a stirred solution of 4-bromo-2-fluoropyridine 4 (4.00 g, 22.73 mmol, 1.00 equiv.) and 128 isobutyronitrile (1.65 g, 23.87 mmol, 1.05 equiv.) in toluene (40.00 mL) was added LiHMDS (34.1 mL, 129 34.10 mmol, 1.50 equiv., 1 M in *n*-hexane) dropwise at 0 °C. The resulting mixture was stirred for 3 h 130 at 0 °C under argon atmosphere. The reaction was monitored by LCMS. Desired product could be 131 detected by LCMS. The reaction was quenched with sat. NH₄Cl(aq.) at 0 °C. The resulting mixture 132 was extracted with EtOAc (3 x 150 mL). The combined organic layers were washed with brine (2x100 133 mL), dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated under reduced 134 pressure. The residue was purified by silica gel column chromatography, eluted with PE/EtOAc (10:1) 135 to afford **5** (3.2 g, 62% yield) as a white solid.

136 HRMS (ESI⁺) *m*/e calcd for [M + H]⁺ C₉H₉BrN₂ 223.9949, found 225.0984.

137 ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (dd, J = 5.2, 1.3 Hz, 1H), 7.75 (t, J = 1.5 Hz, 1H), 7.41 (dt, 138 J = 5.2, 1.7 Hz, 1H), 1.74 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ161.1, 150.4, 134.0, 126.3, 123.7, 123.6, 39.5, 27.8.

140

141 Step 3: N-(5-(2-(2-cyanopropan-2-yl)pyridin-4-yl)-4-(trifluoromethyl)thiazol-2-yl)-4,6-

142 dimethoxypyrimidine-5-carboxamide (1)

143

144 145

Into a 100 mL round-bottom flask were added 2-(4-bromopyridin-2-yl)-2-methylpropanenitrile 5 (1.47
g, 6.53 mmol, 1.00 equiv.), dioxane (20 mL), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane)

148 (1.82 g, 7.18 mmol, 1.10 equiv.), Pd(dppf)Cl₂ (477.00 mg, 0.65 mmol, 0.10 equiv.) and KOAc (1.28 g, 149 13.06 mmol, 2.00 equiv.) at room temperature. The resulting mixture was stirred for 16 h at 90 °C 150 under argon atmosphere. The reaction was monitored by LCMS, and desired borate ester could be 151 detected by LCMS. The reaction was cooled down to room temperature. To the above mixture was 152 added N-(5-iodo-4-(trifluoromethyl)thiazol-2-yl)-4,6-dimethoxypyrimidine-5-carboxamide (3.00 g, 153 6.52 mmol, 1.00 equiv.), dioxane (10 mL), H₂O (6 mL), Pd(dppf)Cl₂ (477.00 mg, 0.65 mmol, 0.10 154 equiv.) and K_2CO_3 (1.80 g, 13.06 mmol, 2.00 equiv.) at room temperature. The resulting mixture was 155 stirred for additional 2 h at 80 °C under argon atmosphere. The reaction was monitored by LCMS, 156 and desired coupling product could be detected by LCMS. The reaction was cooled down to room 157 temperature, then diluted with water. The resulting mixture was extracted with EtOAc (3 x 100 mL). 158 The combined organic layers were washed with brine (2x80 mL), dried over anhydrous Na₂SO₄. After 159 filtration, the filtrate was concentrated under reduced pressure. The residue was purified by silica gel 160 column chromatography, eluted with PE/EtOAc (10:1-4:1) to afford 1 (2.7 g, 86% yield) as a yellow

161 oil.

162 HRMS (ESI⁺) m/e calcd for [M + H]⁺ C₂₀H₁₇F₃N₆O₃S 478.1035, found 479.1177.

163 ¹H NMR (400 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.67 (dd, J = 5.0, 0.8 Hz, 1H), 8.53 (s, 1H), 7.69 – 164 7.56 (m, 1H), 7.33 (ddd, J = 5.1, 1.7, 0.6 Hz, 1H), 4.15 (s, 6H), 1.79 (s, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ168.9, 160.4, 159.3, 157.4, 150.0, 138.7, 130.9, 123.8, 123.3,
122.3, 120.3, 97.5, 55.8, 39.7, 29.8, 27.9.

168 NMR spectra

¹H-NMR and ¹³C-NMR in CDCl₃ 169

