

Supplementary Information for

Distinct neural networks derived from galanin-containing nociceptors and neurotensin-expressing pruriceptors

Yan Chen^{1,3†}, Yuran Song^{2,3†}, Huadong Wang^{4†}, Yiyun Zhang⁵, Xinyu Hu^{3,6}, Kaikai Wang^{3,5}, Yingjin Lu¹, Zoutao Zhang⁷, Shuai Li^{1,3}, Anan Li⁷, Lan Bao^{1,5,6}, Fuqiang Xu⁴, Changlin Li^{1,3*}, and Xu Zhang^{1,3,5*}

¹ Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, China

² Institute of Neuroscience and State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, CAS; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China

³Research Unit of Pain Medicine, Chinese Academy of Medical Sciences; SIMR Joint Lab of Drug Innovation, Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai, China

⁴ Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, China

⁵ School of Life Science and Technology, ShanghaiTec University, Shanghai, China
⁶ State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, CAS, Shanghai, China HUST⁷ Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
[†]These authors contributed equally

* To whom correspondence may be addressed.Email: <u>licl@gdiist.cn</u> or <u>zhangx@sari.ac.cn</u>

This PDF file includes:

Figures S1 to S7 Tables S1 to S4 Abbreviation list Materials and Methods SI References

В Effect of immunosuppression

Fig. S1, Facilitation of HSV infection in DRG neurons. A, A schematic overview of two strategies to facilitate the HSV infection in DRG neurons. Left, microinjection of directly delivering the virus into DRG. The viral genome, capsid and tegument proteins could enter the soma of DRG neurons near the cell nucleus and might facilitate the initiation of viral amplification. Right, immunosuppression with bortezomib, an immunosuppressive agent to inhibit the proteasome so as to impair the degradation of viral capsids. B, Effect of immunosuppression in facilitating HSV infection in DRG neurons. Left, distribution of infected DRG neurons with saline or bortezomib treatment. Scale bar: 100 µm. Right, histogram showing the percentage of labeled neurons. Data was shown as mean \pm SEM. (comparisons by two-tail unpaired t test: ***P < 0.0001, for saline 473 neurons from 23 sections/ 7 animals; for bortezomib 3811 neurons from 45 sections/ 15 animals). Bortezomib significantly increased the infection ratio of HSV. C, Examination of nerve injury-induced Atf3 expression after microinjection into DRG. Absence of Atf3 implied the successful microinjection without nerve injury. Scale bar: 100 µm. Microinjection didn't induce Atf3 expression in DRG.

Figure S2, Chen et al., 2022

Fig. S2. Specificity of labeling, toxicity of virus and repeatability of tracing were verified. A, RNAscope ISH combined with immunohistochemistry showed co-expression of Gal with tdTomato in the H129ATK-TT infected DRG neurons of Gal-Cre mice. Arrows pointed out neurons expressing both Gal and tdTomato. Scale bar, 50 µm. B, Quantification of the percentage of Gal^+ neurons in virus-labeled neurons in DRG. Data was shown as mean \pm SEM (for HSV labeling 230 neurons from 12 sections/4 animals; for AAV labeling 331 neurons from 15 sections/ 5 animals). C, RNAscope ISH combined with immunohistochemistry showed co-expression of Nts with tdTomato in the H129 Δ TK-TT infected DRG neurons of Nts-Cre mice. Arrows pointed out neurons expressing both Nts and tdTomato. Scale bar, 50 μ m. **D**, Quantification of the percentage of Nts⁺ neurons in virus-labeled neurons in DRG. Data was shown as mean \pm SEM (for HSV 308 neurons from 13 sections of 5 animals; for AAV 119 neurons from 9 sections/ 3 animals). E-J, Immunofluorescence showed expression of Caspase 3 (green) and viral labeling (red) in the L5 DRG, lumbar spinal cord, hypothalamus, primary motor and sensory cortex, PAG in the midbrain and medulla. No expression of caspase 3 indicated that the labeled neural networks didn't contaminate by released virus from dying neurons. K Quantification of the percentage of labeled neurons in injected DRG of Gal-Cre or Nts-Cre transgenic mice. Data was shown as mean \pm SEM. (comparisons by two-tail unpaired t test: n.s. P > 0.05, for Gal-Cre 302 neurons from 10 sections/ 3 animals, for Nts-Cre 268 neurons from 10 sections/ 3 animals) L, Quantification of the percentage of labeled neurons in SSp derived from the Gal^+ and Nts^+ DRG neurons. Data was shown as mean \pm SEM. (comparisons by two-tail unpaired t test: n.s. P > 0.05, N = 3 for each group). K and L showed that selected cases presented similar labeling percentages in DRG and SSp. M, Correlation matrix based on the distribution pattern of labeled neurons in each mouse brain. The coefficient of correlation was higher within groups than those between groups.

Fig. S3. Workflow for quantitative analysis of labeled neural networks. A, Representative slice of brain atlas with various grey values denoting each nucleus. The nuclei annotated by the 3D Allen CCFv3 were divided into two parts according to their location in the hemisphere. A total of 1014 nuclei were analyzed. **B**, The sections of a brain were aligned up for reconstruction of a three-dimension brain. **C**, Reconstruction of brain sections were registered to the Allen CCFv3. **D**, The reconstructed volume of brain sections could be well matched to the reference atlas in shape, size and position. **E**, The OTSU algorithm was applied for the image segmentation of labeled neurons in the brain. The green mask on the enlarged view represents the labeled neurons recognized by the algorithm. **F**, The interface of the software LabelMe with registered coordinate of labeled neurons presented as green dots. Fine mapping of the dots can be achieved by manually checking.

			Gal-Cre		Nts-Cre			
Total la	abeling number	4395	6016	17931	6606	6954	19459	
×	SSp (Contra)	+	++	++	+	++	++	
ប	MOp (Contra)	+++	+++	+++	++	++	++	
–	VPL (Contra)	+	+	+	-	-	-	
Ē	PF (Ipsi)	+	+	+	-	-	+	
MB	PAG	+++	+++	++++	+++	+++	+++	
0	PB (Ipsi)	++	++	+++	+++	+++	+++	
-	PB (Contra)	++	+++	+++	+++	++	+++	
Μ	RVM	+++	++++	++++	+++	++++	++++	

+: 1-10, ++: 11-100, +++: 101-1000, ++++: > 1000

Α

Fig. S4. Tracing of somatosensory ascending pathways. A, Schematic overview of the somatosensory ascending pathways from spinal projection neurons to subcortical nuclei and finally to the cortex. B, Representative top view of the three-dimension illustration showing the distribution of labeled neurons in the nuclei of somatosensory ascending pathways derived from the Gal^+ (red) or Nts^+ (blue) DRG neurons. One dot represents one labeled neuron. C, The number and density of labeled neurons in the nuclei of somatosensory ascending pathways. The major differences were observed in VPL and parafascicular nucleus (PF) in the thalamus.

				Gal-Cre			Nts-Cre		
	Total labeling number		4395	6016	17931	6606	6954	19459	
L C	_	VNC	++	+++	+++	++	++	+++	
sten	edia	PRNc	+++	+++	+++	+++	+++	+++	
or sy	for sy	GRN	+++	+++	+++	+++	+++	+++	
atic mot	ral	RN (Contra)	+++	+++	+++	++	++	++	
Some	Soma	RN (Ipsi)	++	++	++	+	-	+	
	_	RM	++	+++	+++	++	+++	+++	
	ledia	RPA	++	++	+++	+++	+++	+++	
_ ا	≥	RO	+++	+++	+++	++	+++	+++	
or syster		NST (Contra)	++	++	+++	+++	+++	+++	
nal mot	eral	NST (Ipsi)	++	++	+++	+++	++	+++	
Emotio	Late	DMX (Contra)	++	++	++	+++	+++	+++	
		DMX (Ipsi)	++	++	+++	+++	+++	+++	

+: 1-10, ++: 11-100, +++: 101-1000, ++++: > 1000

Fig. S5. Tracing of motor systems. A, Schematic overview of the motor systems including somatic motor system and emotional motor system from the cortex to control various functions. **B,** The number and density of labeled neurons in the nuclei of motor systems. The differences were observed in RN, NST and DMX.

Fig. S6. Silencing of RN or NST/DMX impairs response to noxious heat or chemical itch, respectively. A, Hargreaves results showing significant increase of the response latency for noxious heat in mice with hM4Di expressed in the RN after CNO administration. Cut-off, 20 seconds. B, Results of open field test showing significant increase of the total distance of movement and mean velocity in mice with hM4Di expressed in the RN after CNO administration. C, Rotarod results showing that the latency to fall didn't changed when the RN was silenced. Data from A-C were compared by two-tail unpaired t test: **P < 0.005, n.s. P > 0.05, N = 10 for the hM4Di group and N = 5 for control group. A-C indicated that silencing of the RN impairs the response of animals to noxious heat but not the motor abilities. **D**, Itch behavior test showing decreased scratching number induced by intradermal injection of 5-HT in mice with hM4Di expressed in the RN after CNO administration (comparisons by two-tail unpaired t test: * P < 0.05, n.s. P > 0.05, N = 7 for the hM4Di group and N = 5 for control group). E and F, Measurement of heart and blood pressure showing that silencing of the NST/DMX didn't affect the heart rate and systolic blood pressure of mice (comparisons by two-tail unpaired t test: * P < 0.05, n.s. P > 0.05, N = 5 for each group). **D-F** indicated that silencing of the NST/DMX impaired the response of animals to 5-HT but didn't affect the cardiovascular activity at rest state.

Fig. S7. Schematic summary of the anatomic distinction between networks derived from Gal^+ and Nts^+ DRG neurons. Boxes in red, differentially labeled nuclei derived from the Gal^+ DRG neurons; Boxes in blue, differentially labeled nuclei derived from the Nts^+ DRG neurons; Boxes in purple, common nuclei. For ascending processing, the neural networks derived from Gal^+ nociceptors and Nts^+ pruriceptors share the spinobulbar projection but not the STT. In the motor system, the Gal^+ nociceptor-derived network tends to be more involved in the somatic motor system, while the Nts^+ pruriceptor-derived network tends to more participate in the emotional reaction. The full lines were drawn based on the data in this study, the dotted lines and the direction of arrows were drawn based on previous reports.

*Nts-*Cre Gal-Cre Gal-Cre Gal-Cre *Nts*-Cre *Nts*-Cre Mice with Total 1# 2# 3# 1# 2# 3# number of labeling Side 4396 6022 17948 6607 6962 19459 Nuclei 0.159 0.050 0.000 0.000 0.021 MOp5 0.061 Ipsi CTX SSp-ll5 0.046 0.066 0.017 0.000 0.000 0.000 Ipsi VM 0.068 0.017 0.212 0.000 0.000 0.005 Ipsi VPM 0.046 0.033 0.006 0.000 0.000 0.000 Ipsi SPFm 0.091 0.050 0.112 0.000 0.058 0.026 Ipsi 0.129 SPA 0.114 0.017 0.028 0.000 0.010 Ipsi MD 0.182 0.033 0.078 0.000 0.115 0.021 Ipsi TH PR 0.091 0.017 0.017 0.000 0.000 0.005 Ipsi PVT 1.206 0.234 0.259 0.100 0.045 0.062 Ipsi RE 0.023 0.033 0.006 0.000 0.000 0.005 Ipsi PF 0.250 0.017 0.033 0.000 0.000 0.021 Ipsi LH 0.033 0.000 0.000 0.023 0.056 0.010 Ipsi PVH 2.002 1.612 1.612 4.693 1.021 2.050 Ipsi PVa 0.114 0.083 0.006 0.000 0.000 0.036 Ipsi PVi 0.068 0.316 0.011 0.106 0.115 0.077 Ipsi ARH 0.023 0.166 0.022 0.015 0.029 0.062 Ipsi DMH 0.364 0.615 0.346 0.787 0.388 1.871 Ipsi AHN 0.114 0.033 0.028 0.000 0.029 0.051 Ipsi MPN 0.137 0.033 0.050 0.015 0.058 0.046 Ipsi HY PVHd 2.002 1.247 0.586 0.545 0.863 0.252 Ipsi VMH 0.296 0.116 0.123 0.000 0.086 0.041 Ipsi PH 1.092 0.549 1.193 0.333 0.604 0.591 Ipsi LHA 2.253 1.646 1.372 1.605 1.021 0.843 Ipsi LPO 0.137 0.017 0.078 0.000 0.129 0.062 Ipsi PSTN 0.501 0.066 0.178 0.000 0.000 0.021 Ipsi ΖI 0.592 0.449 0.491 0.106 0.201 0.098 Ipsi SCop 0.023 0.033 0.045 0.015 0.000 0.000 Ipsi MEV 0.046 0.017 0.078 0.015 0.187 0.051 Ipsi 0.000 VTA 0.091 0.033 0.061 0.014 0.015 Ipsi MRN 1.615 0.981 3.463 0.272 0.331 0.324 Ipsi 0.000 0.029 MB SCdg 0.114 0.017 0.139 0.000 Ipsi SCiw 0.046 0.050 0.184 0.000 0.000 0.005 Ipsi SCig 0.046 0.017 0.123 0.000 0.014 0.015 Ipsi PAG 6.257 3.324 7.211 1.832 2.100 3.073 Ipsi ND 0.033 0.000 0.023 0.039 0.043 0.010 Ipsi

Table S1: Labeling percentages of constantly labeled nuclei tracing from Gal⁺ DRG neurons

	APN	0.296	0.050	0.363	0.000	0.000	0.000	Ipsi
	NPC	0.068	0.083	0.173	0.000	0.000	0.026	Ipsi
	CUN	0.046	0.066	0.201	0.106	0.014	0.046	Ipsi
	RN	0.910	0.199	0.692	0.045	0.000	0.010	Ipsi
	EW	0.205	0.366	0.117	0.015	0.029	0.031	Ipsi
	PPN	0.228	0.216	0.703	0.257	0.072	0.108	Ipsi
	CLI	0.023	0.017	0.006	0.030	0.000	0.000	Ipsi
	DR	0.068	0.116	0.067	0.045	0.000	0.005	Ipsi
	NLL	0.068	0.100	0.022	0.000	0.043	0.031	Ipsi
	PB	0.660	1.064	1.372	2.195	1.452	1.732	Ipsi
	KF	0.091	0.083	0.073	0.015	0.043	0.164	Ipsi
	SOCI	0.182	0.166	0.095	0.817	0.086	0.339	Ipsi
	В	0.774	0.382	0.206	0.696	0.503	0.293	Ipsi
	DTN	0.023	0.017	0.006	0.015	0.043	0.000	Ipsi
	PCG	0.501	0.266	0.446	0.409	0.316	0.627	Ipsi
Р	PRNc	1.456	3.474	3.090	3.118	0.647	1.609	Ipsi
	SUT	0.182	0.798	0.781	0.045	0.475	0.344	Ipsi
	CS	0.046	0.050	0.039	0.000	0.000	0.010	Ipsi
	LC	0.614	1.413	1.829	0.500	0.417	0.329	Ipsi
	LDT	0.137	0.183	0.429	0.091	0.101	0.067	Ipsi
	NI	0.023	0.033	0.006	0.030	0.000	0.015	Ipsi
	PRNr	3.254	0.831	2.794	1.302	0.618	0.612	Ipsi
	SLD	0.364	1.546	0.563	1.045	0.431	0.293	Ipsi
	AP	0.046	0.033	0.039	0.106	0.460	0.139	Ipsi
	CU	0.068	0.066	0.073	0.000	0.043	0.051	Ipsi
	ECU	0.023	0.017	0.045	0.015	0.000	0.021	Ipsi
	NTS	0.728	0.981	0.909	3.300	2.013	0.848	Ipsi
	SPVI	0.046	0.100	0.112	0.000	0.000	0.093	Ipsi
	VII	0.182	0.682	0.190	1.847	0.604	1.151	Ipsi
	DMX	0.660	0.615	0.502	3.134	2.114	0.622	Ipsi
	GRN	3.094	3.657	2.320	1.620	2.028	3.212	Ipsi
	IO	0.819	0.017	0.346	0.378	3.207	0.452	Ipsi
	IRN	1.115	1.828	2.220	3.330	3.638	2.071	Ipsi
MX	LRNm	0.728	0.399	0.547	0.469	4.645	1.192	Ipsi
IVIII	MARN	1.502	3.574	2.565	1.938	2.272	3.649	Ipsi
	MDRNd	0.159	0.183	0.245	0.167	0.216	0.062	Ipsi
	MDRNv	0.819	0.449	0.273	0.923	0.446	0.349	Ipsi
	PARN	0.569	0.731	1.283	1.029	0.201	0.468	Ipsi
	PGRN1	3.914	2.942	2.275	2.816	9.189	5.822	Ipsi
	PRP	0.228	0.033	0.312	0.197	0.316	0.128	Ipsi
	PPY	0.432	0.947	0.340	1.029	0.446	1.470	Ipsi
	MV	0.865	0.947	1.154	0.530	0.475	0.925	Ipsi
	SPIV	0.091	0.116	0.502	0.015	0.000	0.067	Ipsi
-	SUV	0.091	0.316	0.290	0.015	0.144	0.015	Ipsi
	x	0.046	0.100	0.011	0.000	0.000	0.005	Ipsi

	XII	0.023	0.116	0.028	0.061	0.058	0.200	Ipsi
	RM	1.160	1.679	0.323	0.348	1.237	1.038	Ipsi
	RPA	0.751	0.898	0.402	0.969	1.553	0.822	Ipsi
	RO	1.229	1.828	0.195	0.288	1.366	0.668	Ipsi
	CENT2	0.319	0.133	0.067	0.015	0.000	0.021	Ipsi
	CENT3	0.296	0.249	0.128	0.030	0.000	0.082	Ipsi
	CUL4-5	0.159	0.133	0.329	0.045	0.000	0.015	Ipsi
	DEC	0.068	0.050	0.162	0.000	0.000	0.000	Ipsi
CD	PYR	0.023	0.050	0.011	0.000	0.000	0.000	Ipsi
CD	SIM	0.023	0.033	0.151	0.015	0.000	0.005	Ipsi
	ANcr1	0.046	0.017	0.139	0.015	0.000	0.015	Ipsi
	ANcr2	0.046	0.017	0.056	0.000	0.000	0.000	Ipsi
	FN	0.023	0.199	0.145	0.015	0.000	0.000	Ipsi
	IP	0.023	0.166	0.218	0.076	0.014	0.010	Ipsi
СТУ	MOp5	2.321	1.695	0.742	0.151	0.331	0.391	Contra
CIA	SSp-115	0.159	0.332	0.117	0.045	0.216	0.324	Contra
CNU	CEAm	0.023	0.033	0.017	0.000	0.000	0.000	Contra
	VPL	0.341	0.050	0.017	0.000	0.000	0.000	Contra
	VPM	0.068	0.017	0.011	0.000	0.000	0.000	Contra
	SPA	0.068	0.033	0.006	0.015	0.058	0.000	Contra
TH	РО	0.046	0.199	0.006	0.000	0.000	0.000	Contra
	IMD	0.023	0.066	0.011	0.000	0.000	0.021	Contra
	MD	0.046	0.050	0.045	0.015	0.014	0.000	Contra
	PVT	0.819	0.449	0.195	0.015	0.201	0.041	Contra
	PVH	0.614	0.399	0.424	1.241	0.345	0.421	Contra
	PVi	0.091	0.017	0.011	0.045	0.014	0.031	Contra
	ARH	0.046	0.017	0.022	0.000	0.014	0.026	Contra
	DMH	0.205	0.216	0.268	0.530	0.561	0.278	Contra
	MPO	0.023	0.050	0.084	0.015	0.086	0.031	Contra
	AHN	0.114	0.050	0.039	0.000	0.000	0.000	Contra
	MPN	0.091	0.017	0.028	0.000	0.029	0.021	Contra
IIV	PVHd	0.341	0.283	0.106	0.257	0.417	0.108	Contra
пт	VMH	0.137	0.083	0.039	0.000	0.014	0.015	Contra
	PH	0.910	0.482	1.093	0.288	0.345	0.678	Contra
	LHA	1.047	0.316	0.770	0.469	0.244	0.236	Contra
	LPO	0.046	0.017	0.022	0.000	0.000	0.108	Contra
	PSTN	0.182	0.066	0.028	0.030	0.000	0.000	Contra
	TU	0.046	0.017	0.011	0.030	0.043	0.010	Contra
	ZI	0.273	0.199	0.117	0.000	0.029	0.031	Contra
	FF	0.023	0.066	0.073	0.000	0.000	0.000	Contra
	ICc	0.023	0.100	0.006	0.000	0.000	0.015	Contra
	SNr	0.023	0.017	0.045	0.000	0.000	0.000	Contra
MB	VTA	0.046	0.033	0.033	0.030	0.043	0.005	Contra
MB	MRN	1.797	1.280	1.818	0.212	0.575	0.313	Contra
	SCdg	0.046	0.050	0.067	0.000	0.000	0.000	Contra

	SCig	0.046	0.017	0.056	0.000	0.000	0.005	Contra
	PAG	4.460	4.521	4.004	1.393	1.395	2.035	Contra
	PRC	0.182	0.050	0.078	0.000	0.000	0.000	Contra
	APN	0.455	0.066	0.245	0.015	0.000	0.000	Contra
	RN	3.003	2.527	1.099	0.303	0.302	0.411	Contra
	EW	0.182	0.499	0.184	0.030	0.000	0.026	Contra
	PPN	0.228	0.283	0.284	0.167	0.043	0.031	Contra
	IF	0.023	0.033	0.006	0.000	0.000	0.000	Contra
	DR	0.023	0.050	0.061	0.015	0.000	0.031	Contra
	PB	0.683	1.080	0.680	1.559	0.820	0.714	Contra
	SOC1	0.159	0.050	0.089	0.363	0.058	0.005	Contra
	В	0.182	0.183	0.173	0.348	0.129	0.216	Contra
	PCG	0.296	0.532	0.156	0.227	0.345	0.334	Contra
	PRNc	2.253	2.610	1.896	2.301	0.892	0.961	Contra
D	SUT	0.273	0.266	0.435	0.272	0.216	0.349	Contra
P	V	0.023	0.233	0.045	0.030	0.000	0.093	Contra
	LC	0.273	0.898	0.876	0.424	0.374	0.298	Contra
	LDT	0.023	0.166	0.212	0.151	0.345	0.031	Contra
	PRNr	2.435	1.280	2.130	1.347	0.618	0.498	Contra
	RPO	0.046	0.033	0.017	0.030	0.000	0.000	Contra
	SLD	0.296	1.180	0.441	0.787	0.403	0.319	Contra
	AP	0.023	0.050	0.022	0.030	0.216	0.021	Contra
	NTS	0.296	0.848	0.641	2.165	1.251	0.653	Contra
	SPVI	0.023	0.066	0.134	0.015	0.029	0.026	Contra
	VII	0.205	0.449	0.095	1.877	0.273	0.498	Contra
	DMX	0.205	0.914	0.463	3.239	1.438	0.555	Contra
	GRN	2.503	2.061	1.545	1.287	1.194	1.567	Contra
	Ю	0.933	0.033	0.212	0.363	2.502	0.370	Contra
	IRN	0.887	1.213	1.863	3.270	2.617	2.179	Contra
	LRNm	0.910	0.116	0.424	0.590	2.387	0.719	Contra
	MARN	1.320	2.443	1.528	2.089	1.524	2.590	Contra
	MDRNd	0.182	0.183	0.190	0.106	0.158	0.026	Contra
MY	MDRNv	0.387	0.199	0.374	0.378	0.647	0.288	Contra
	PARN	0.319	0.565	0.814	0.500	0.115	0.452	Contra
	PGRN1	2.548	1.878	1.662	2.679	4.832	4.044	Contra
	PRP	0.023	0.050	0.223	0.182	0.259	0.344	Contra
	PPY	0.091	0.332	0.323	0.590	0.259	0.699	Contra
	MV	0.364	0.582	0.719	0.363	0.129	0.632	Contra
	SPIV	0.023	0.233	0.379	0.015	0.000	0.057	Contra
	SUV	0.068	0.050	0.078	0.030	0.000	0.000	Contra
	XII	0.023	0.116	0.039	0.015	0.029	0.118	Contra
	RM	0.705	1.097	0.508	0.802	0.661	0.863	Contra
	RPA	0.796	0.549	0.402	1.544	0.906	0.637	Contra
	RO	1.274	0.515	0.407	1.196	0.230	0.719	Contra
СВ	CENT2	0.182	0.150	0.084	0.000	0.000	0.057	Contra

CENT3	0.205	0.050	0.117	0.045	0.000	0.026	Contra
CUL4-5	0.046	0.116	0.251	0.000	0.000	0.021	Contra
PYR	0.023	0.017	0.017	0.000	0.000	0.000	Contra
ANcr1	0.068	0.050	0.039	0.000	0.000	0.000	Contra
IP	0.023	0.050	0.156	0.015	0.000	0.015	Contra

M	ice with Total	Gal-Cre	Gal-Cre	Gal-Cre	<i>Nts-</i> Cre	<i>Nts-</i> Cre	<i>Nts</i> -Cre	
	number of	1#	2#	3#	1#	2#	3#	
Nucle	labeling i	4396	6022	17948	6607	6962	19459	Side
CNU	BST	0.205	0.000	0.078	0.045	0.086	0.031	Insi
тн	PVT	1 206	0.100	0.234	0.045	0.259	0.051	Insi
	PVH	2 002	1.612	1.612	4 693	1 021	2 050	<u>Ipsi</u> Insi
	PVi	0.068	0.316	0.011	0.106	0.115	0.077	Ipsi Insi
	ARH	0.000	0.166	0.022	0.015	0.029	0.062	Insi
	DMH	0.364	0.615	0.346	0.787	0.388	1 871	Insi
	MPO	0.205	0.000	0.128	0.045	0.129	0.010	Insi
HY	MPN	0.137	0.033	0.050	0.015	0.058	0.046	Insi
	PVHd	2.002	1.247	0.586	0.545	0.863	0.252	Ipsi
	PH	1.092	0.549	1,193	0.333	0.604	0.591	Ipsi
	LHA	2.253	1.646	1.372	1.605	1.021	0.843	Ipsi
	RCH	0.000	0.000	0.011	0.030	0.086	0.026	Ipsi
	ZI	0.592	0.449	0.491	0.106	0.201	0.098	Ipsi
	ICd	0.068	0.000	0.156	0.061	0.029	0.036	Ipsi
	MEV	0.046	0.017	0.078	0.015	0.187	0.051	Ipsi
	RR	0.000	0.083	0.128	0.045	0.072	0.278	Ipsi
	MRN	1.615	0.981	3.463	0.272	0.331	0.324	Ipsi
MB	PAG	6.257	3.324	7.211	1.832	2.100	3.073	Ipsi
	PRC	0.023	0.000	0.095	0.015	0.029	0.010	Ipsi
	CUN	0.046	0.066	0.201	0.106	0.014	0.046	Ipsi
	EW	0.205	0.366	0.117	0.015	0.029	0.031	Ipsi
	PPN	0.228	0.216	0.703	0.257	0.072	0.108	Ipsi
	PSV	0.000	0.000	0.028	0.015	0.014	0.021	Ipsi
	PB	0.660	1.064	1.372	2.195	1.452	1.732	Ipsi
	KF	0.091	0.083	0.073	0.015	0.043	0.164	Ipsi
	SOCm	0.000	0.000	0.000	0.045	0.029	0.021	Ipsi
	SOCI	0.182	0.166	0.095	0.817	0.086	0.339	Ipsi
	В	0.774	0.382	0.206	0.696	0.503	0.293	Ipsi
р	PCG	0.501	0.266	0.446	0.409	0.316	0.627	Ipsi
r	PRNc	1.456	3.474	3.090	3.118	0.647	1.609	Ipsi
	SUT	0.182	0.798	0.781	0.045	0.475	0.344	Ipsi
	V	0.000	0.066	0.100	0.030	0.014	0.093	Ipsi
	LC	0.614	1.413	1.829	0.500	0.417	0.329	Ipsi
	LDT	0.137	0.183	0.429	0.091	0.101	0.067	Ipsi
	PRNr	3.254	0.831	2.794	1.302	0.618	0.612	Ipsi
	SLC	0.000	1.463	1.071	1.075	0.633	0.134	Ipsi

Table S2: Labeling percentages of constantly labeled nuclei tracing from Nts⁺ DRG neurons

	SLD	0.364	1.546	0.563	1.045	0.431	0.293	Ipsi
	AP	0.046	0.033	0.039	0.106	0.460	0.139	Ipsi
	NTS	0.728	0.981	0.909	3.300	2.013	0.848	Ipsi
	VII	0.182	0.682	0.190	1.847	0.604	1.151	Ipsi
	AMBv	0.000	0.133	0.000	0.061	0.129	0.077	Ipsi
	DMX	0.660	0.615	0.502	3.134	2.114	0.622	Ipsi
	GRN	3.094	3.657	2.320	1.620	2.028	3.212	Ipsi
	IO	0.819	0.017	0.346	0.378	3.207	0.452	Ipsi
	IRN	1.115	1.828	2.220	3.330	3.638	2.071	Ipsi
	LRNm	0.728	0.399	0.547	0.469	4.645	1.192	Ipsi
	MARN	1.502	3.574	2.565	1.938	2.272	3.649	Ipsi
	MDRNd	0.159	0.183	0.245	0.167	0.216	0.062	Ipsi
MY	MDRNv	0.819	0.449	0.273	0.923	0.446	0.349	Ipsi
	PARN	0.569	0.731	1.283	1.029	0.201	0.468	Ipsi
	PGRNd	0.000	0.000	0.178	0.409	0.115	0.247	Ipsi
	PGRN1	3.914	2.942	2.275	2.816	9.189	5.822	Ipsi
	PRP	0.228	0.033	0.312	0.197	0.316	0.128	Ipsi
	PPY	0.432	0.947	0.340	1.029	0.446	1.470	Ipsi
	MV	0.865	0.947	1.154	0.530	0.475	0.925	Ipsi
	SUV	0.091	0.316	0.290	0.015	0.144	0.015	Ipsi
	XII	0.023	0.116	0.028	0.061	0.058	0.200	Ipsi
	RM	1.160	1.679	0.323	0.348	1.237	1.038	Ipsi
	RPA	0.751	0.898	0.402	0.969	1.553	0.822	Ipsi
	RO	1.229	1.828	0.195	0.288	1.366	0.668	Ipsi
СВ	IP	0.023	0.166	0.218	0.076	0.014	0.010	Ipsi
	MOp5	2.321	1.695	0.742	0.151	0.331	0.391	Contra
СТХ	SSp-ll5	0.159	0.332	0.117	0.045	0.216	0.324	Contra
	SSp-tr5	0.000	0.017	0.017	0.015	0.029	0.154	Contra
TH	PVT	0.819	0.449	0.195	0.015	0.201	0.041	Contra
	PVH	0.614	0.399	0.424	1.241	0.345	0.421	Contra
	PVi	0.091	0.017	0.011	0.045	0.014	0.031	Contra
	AVPV	0.023	0.000	0.000	0.045	0.029	0.005	Contra
	DMH	0.205	0.216	0.268	0.530	0.561	0.278	Contra
HY	MPO	0.023	0.050	0.084	0.015	0.086	0.031	Contra
	PVHd	0.341	0.283	0.106	0.257	0.417	0.108	Contra
	PH	0.910	0.482	1.093	0.288	0.345	0.678	Contra
	LHA	1.047	0.316	0.770	0.469	0.244	0.236	Contra
	TU	0.046	0.017	0.011	0.030	0.043	0.010	Contra
	VTA	0.046	0.033	0.033	0.030	0.043	0.005	Contra
	MRN	1.797	1.280	1.818	0.212	0.575	0.313	Contra
	PAG	4.460	4.521	4.004	1.393	1.395	2.035	Contra
MB	NPC	0.137	0.000	0.073	0.045	0.014	0.005	Contra
	CUN	0.000	0.083	0.061	0.091	0.014	0.021	Contra
	RN	3.003	2.527	1.099	0.303	0.302	0.411	Contra
	PPN	0.228	0.283	0.284	0.167	0.043	0.031	Contra

	PSV	0.000	0.033	0.022	0.015	0.029	0.015	Contra
	PB	0.683	1.080	0.680	1.559	0.820	0.714	Contra
	SOCI	0.159	0.050	0.089	0.363	0.058	0.005	Contra
	В	0.182	0.183	0.173	0.348	0.129	0.216	Contra
	PCG	0.296	0.532	0.156	0.227	0.345	0.334	Contra
	PG	0.023	0.000	0.084	0.061	0.029	0.010	Contra
D	PRNc	2.253	2.610	1.896	2.301	0.892	0.961	Contra
r	SUT	0.273	0.266	0.435	0.272	0.216	0.349	Contra
	LC	0.273	0.898	0.876	0.424	0.374	0.298	Contra
	LDT	0.023	0.166	0.212	0.151	0.345	0.031	Contra
	NI	0.046	0.000	0.033	0.030	0.014	0.010	Contra
	PRNr	2.435	1.280	2.130	1.347	0.618	0.498	Contra
	SLC	0.000	1.280	0.719	0.711	0.288	0.894	Contra
	SLD	0.296	1.180	0.441	0.787	0.403	0.319	Contra
	AP	0.023	0.050	0.022	0.030	0.216	0.021	Contra
	NTS	0.296	0.848	0.641	2.165	1.251	0.653	Contra
	SPVI	0.023	0.066	0.134	0.015	0.029	0.026	Contra
	VII	0.205	0.449	0.095	1.877	0.273	0.498	Contra
	DMX	0.205	0.914	0.463	3.239	1.438	0.555	Contra
	GRN	2.503	2.061	1.545	1.287	1.194	1.567	Contra
	IO	0.933	0.033	0.212	0.363	2.502	0.370	Contra
	IRN	0.887	1.213	1.863	3.270	2.617	2.179	Contra
	LRNm	0.910	0.116	0.424	0.590	2.387	0.719	Contra
	MARN	1.320	2.443	1.528	2.089	1.524	2.590	Contra
MV	MDRNd	0.182	0.183	0.190	0.106	0.158	0.026	Contra
IVI I	MDRNv	0.387	0.199	0.374	0.378	0.647	0.288	Contra
	PARN	0.319	0.565	0.814	0.500	0.115	0.452	Contra
	PGRNd	0.023	0.000	0.502	0.182	0.058	0.355	Contra
	PGRN1	2.548	1.878	1.662	2.679	4.832	4.044	Contra
	PRP	0.023	0.050	0.223	0.182	0.259	0.344	Contra
	PPY	0.091	0.332	0.323	0.590	0.259	0.699	Contra
	MV	0.364	0.582	0.719	0.363	0.129	0.632	Contra
	XII	0.023	0.116	0.039	0.015	0.029	0.118	Contra
	RM	0.705	1.097	0.508	0.802	0.661	0.863	Contra
	RPA	0.796	0.549	0.402	1.544	0.906	0.637	Contra
	RO	1.274	0.515	0.407	1.196	0.230	0.719	Contra
CB	FN	0.000	0.066	0.095	0.030	0.014	0.015	Contra

	Mice with	Gal-Cre	Gal-Cre	Gal-Cre	<i>Nts</i> -Cre	<i>Nts</i> -Cre	<i>Nts</i> -Cre	
	Total number	1#	2#	3#	1#	2#	3#	
Nucle	of labeling	4396	6022	17948	6607	6962	19459	Type of network
	MOp5_ipsi	0.159	0.050	0.061	0.000	0.000	0.021	Gal
CTX	SSp-115_ipsi	0.046	0.066	0.017	0.000	0.000	0.000	Gal
	SSp-tr5_contra	0.068	0.017	0.212	0.000	0.000	0.005	Nts
CNU	CEAm_contra	0.046	0.033	0.006	0.000	0.000	0.000	Gal
	VM_ipsi	0.091	0.050	0.112	0.000	0.058	0.026	Gal
	VPM_ipsi	0.114	0.017	0.028	0.000	0.129	0.010	Gal
	SPFm ipsi	0.182	0.033	0.078	0.000	0.115	0.021	Gal
	MD ipsi	0.091	0.017	0.017	0.000	0.000	0.005	Gal
	PR ipsi	1.206	0.100	0.234	0.045	0.259	0.062	Gal
	RE_ipsi	0.023	0.033	0.006	0.000	0.000	0.005	Gal
TH	PF_ipsi	0.250	0.017	0.033	0.000	0.000	0.021	Gal
	LH ipsi	0.023	0.033	0.056	0.000	0.000	0.010	Gal
	VPL contra	2.002	1.612	1.612	4.693	1.021	2.050	Gal
	VPM_contra	0.114	0.083	0.006	0.000	0.000	0.036	Gal
	PO_contra	0.068	0.316	0.011	0.106	0.115	0.077	Gal
	IMD contra	0.023	0.166	0.022	0.015	0.029	0.062	Gal
	MD_contra	0.364	0.615	0.346	0.787	0.388	1.871	Gal
	PVa_ipsi	0.114	0.033	0.028	0.000	0.029	0.051	Gal
	AHN_ipsi	0.137	0.033	0.050	0.015	0.058	0.046	Gal
	VMH_ipsi	2.002	1.247	0.586	0.545	0.863	0.252	Gal
	PSTN_ipsi	0.296	0.116	0.123	0.000	0.086	0.041	Gal
	ARH_contra	1.092	0.549	1.193	0.333	0.604	0.591	Gal
	AHN_contra	2.253	1.646	1.372	1.605	1.021	0.843	Gal
ШV	MPN_contra	0.137	0.017	0.078	0.000	0.129	0.062	Gal
11 1	VMH_contra	0.501	0.066	0.178	0.000	0.000	0.021	Gal
	PSTN_contra	0.592	0.449	0.491	0.106	0.201	0.098	Gal
	ZI_contra	0.023	0.033	0.045	0.015	0.000	0.000	Gal
	FF_contra	0.046	0.017	0.078	0.015	0.187	0.051	Gal
	_ZI_ipsi	0.091	0.033	0.061	0.000	0.014	0.015	Gal
	RCH_ipsi	1.615	0.981	3.463	0.272	0.331	0.324	Nts
	AVPV_contra	0.114	0.017	0.139	0.000	0.029	0.000	Nts
	SCop_ipsi	0.046	0.050	0.184	0.000	0.000	0.005	Gal
	VTA_ipsi	0.046	0.017	0.123	0.000	0.014	0.015	Gal
	SCdg_ipsi	6.257	3.324	7.211	1.832	2.100	3.073	Gal
	SCiw_ipsi	0.023	0.033	0.039	0.000	0.043	0.010	Gal
MB	SCig_ipsi	0.296	0.050	0.363	0.000	0.000	0.000	Gal
	APN_ipsi	0.068	0.083	0.173	0.000	0.000	0.026	Gal
	NPC_ipsi	0.046	0.066	0.201	0.106	0.014	0.046	Gal
	RN_ipsi	0.910	0.199	0.692	0.045	0.000	0.010	Gal
-	DR_ipsi	0.205	0.366	0.117	0.015	0.029	0.031	Gal
	ICc contra	0.228	0.216	0.703	0.257	0.072	0.108	Gal

Table S3: Labeling percentages of differentially labeled nuclei

	SNr contra	0.023	0.017	0.006	0.030	0.000	0.000	Gal
	SCdg contra	0.068	0.116	0.067	0.045	0.000	0.005	Gal
	SCig contra	0.068	0.100	0.022	0.000	0.043	0.031	Gal
	PRC contra	0.660	1.064	1.372	2.195	1.452	1.732	Gal
	APN contra	0.091	0.083	0.073	0.015	0.043	0.164	Gal
	EW contra	0.182	0.166	0.095	0.817	0.086	0.339	Gal
	IF contra	0.774	0.382	0.206	0.696	0.503	0.293	Gal
	DR contra	0.023	0.017	0.006	0.015	0.043	0.000	Gal
	MRN_contra	0.501	0.266	0.446	0.409	0.316	0.627	Gal
	PAG_contra	1.456	3.474	3.090	3.118	0.647	1.609	Gal
	PPN_contra	0.182	0.798	0.781	0.045	0.475	0.344	Gal
	NLL_ipsi	0.046	0.050	0.039	0.000	0.000	0.010	Gal
	CS_ipsi	0.614	1.413	1.829	0.500	0.417	0.329	Gal
Р	V_contra	0.137	0.183	0.429	0.091	0.101	0.067	Gal
	RPO_contra	0.023	0.033	0.006	0.030	0.000	0.015	Gal
	SOCm_ipsi	3.254	0.831	2.794	1.302	0.618	0.612	Nts
	CU_ipsi	0.364	1.546	0.563	1.045	0.431	0.293	Gal
	ECU_ipsi	0.046	0.033	0.039	0.106	0.460	0.139	Gal
	SPVI_ipsi	0.068	0.066	0.073	0.000	0.043	0.051	Gal
	SPIV_ipsi	0.023	0.017	0.045	0.015	0.000	0.021	Gal
	x_ipsi	0.728	0.981	0.909	3.300	2.013	0.848	Gal
IVI Y	SPIV_contra	0.046	0.100	0.112	0.000	0.000	0.093	Gal
	SUV_contra	0.182	0.682	0.190	1.847	0.604	1.151	Gal
	IRN_contra	0.660	0.615	0.502	3.134	2.114	0.622	Nts
	AMBv_ipsi	3.094	3.657	2.320	1.620	2.028	3.212	Nts
	PGRNd_ipsi	0.819	0.017	0.346	0.378	3.207	0.452	Nts
	CENT2_ipsi	1.115	1.828	2.220	3.330	3.638	2.071	Gal
	CENT3_ipsi	0.728	0.399	0.547	0.469	4.645	1.192	Gal
	CUL4-5_ipsi	1.502	3.574	2.565	1.938	2.272	3.649	Gal
	DEC_ipsi	0.159	0.183	0.245	0.167	0.216	0.062	Gal
	PYR_ipsi	0.819	0.449	0.273	0.923	0.446	0.349	Gal
	SIM_ipsi	0.569	0.731	1.283	1.029	0.201	0.468	Gal
	ANcr1_ipsi	3.914	2.942	2.275	2.816	9.189	5.822	Gal
CB	ANcr2_ipsi	0.228	0.033	0.312	0.197	0.316	0.128	Gal
	FN_ipsi	0.432	0.947	0.340	1.029	0.446	1.470	Gal
	CENT2_contra	0.865	0.947	1.154	0.530	0.475	0.925	Gal
	CENT3_contra	0.091	0.116	0.502	0.015	0.000	0.067	Gal
	CUL4-5_contra	0.091	0.316	0.290	0.015	0.144	0.015	Gal
	PYR_contra	0.046	0.100	0.011	0.000	0.000	0.005	Gal
	ANcr1_contra	0.023	0.116	0.028	0.061	0.058	0.200	Gal
	IP_contra	1.160	1.679	0.323	0.348	1.237	1.038	Gal

	Nuclei	Type of network	Related function
	MOp5 left	Gal	Motor related
CTV	SSp-ll5 left	Gal	Sensory related
СТХ	SSp-tr5 right	Nts	Sensory related
	SSp-ll5 right	Common	Sensory related
	SCop left	Gal	Sensory related
	VTA_left	Gal	Motor related
	SCdg left	Gal	Motor related
	SCiw_left	Gal	Motor related
	SCig_left	Gal	Motor related
	APN_left	Gal	Motor related
	NPC left	Gal	Motor related
	RN_left	Gal	Motor related
	DR_left	Gal	Behavioral state related
	ICc_right	Gal	Sensory related
	SNr_right	Gal	Motor related
МД	SCdg_right	Gal	Motor related
IVID	SCig_right	Gal	Motor related
	PRC_right	Gal	Motor related
	APN_right	Gal	Motor related
	EW_right	Gal	Motor related
	IF_right	Gal	Behavioral state related
	DR_right	Gal	Behavioral state related
	MRN_right	Gal	Motor related
	PAG_right	Gal	Motor related
	PPN_right	Gal	Motor related
	MEV_left	Common	Sensory related
	CUN_left	Common	Motor related
	VTA_right	Common	Motor related
	NLL_left	Gal	Sensory related
	CS_left	Gal	Behavioral state related
	V_right	Gal	Motor related
	RPO_right	Gal	Behavioral state related
	SOCm_left	Nts	Sensory related
	PB_left	Common	Sensory related
	KF_left	Common	Sensory related
Р	B_left	Common	Motor related
	PCG_left	Common	Motor related
	PRNc_left	Common	Motor related
	SLD_left	Common	Behavioral state related
	PB_right	Common	Sensory related
	SOCl_right	Common	Sensory related
	B_right	Common	Motor related
	PCG_right	Common	Motor related
	PRNc right	Common	Motor related

Table S4: Functional annotations of differentially labeled nuclei in the cortex, midbrain and hindbrain

	SUT right	Common	Motor related
	LC right	Common	Behavioral state related
	LDT right	Common	Behavioral state related
	SLD right	Common	Behavioral state related
	CU left	Gal	Sensory related
	ECU left	Gal	Sensory related
	SPVI left	Gal	Sensory related
	SPIV left	Gal	Motor related
	x left	Gal	Motor related
	SPIV right	Gal	Motor related
	SUV right	Gal	Motor related
	IRN right	Nts	Motor related
	AMBv left	Nts	Motor related
	PGRNd left	Nts	Motor related
МҮ	GRN left	Common	Motor related
	IRN left	Common	Motor related
	MARN left	Common	Motor related
	MDRNd left	Common	Motor related
	MDRNv left	Common	Motor related
	PARN left	Common	Motor related
	PGRN1 left	Common	Motor related
	PRP left	Common	Motor related
	PPY_left	Common	Motor related
	MV_left	Common	Motor related
	XII_left	Common	Motor related
	RM_left	Common	Behavioral state related
	RPA_left	Common	Behavioral state related
	RO_left	Common	Behavioral state related
	GRN_right	Common	Motor related
	MARN_right	Common	Motor related
	MDRNd_right	Common	Motor related
	MDRNv_right	Common	Motor related
	PARN_right	Common	Motor related
	PGRN1_right	Common	Motor related
	MV_right	Common	Motor related
	XII_right	Common	Motor related
	RM_right	Common	Behavioral state related
	RPA_right	Common	Behavioral state related
	RO_right	Common	Behavioral state related

Abbreviation

Atf3	activating transcription factor 3	
CB		cerebellum
CL		central lateral nucleus of the thalamus
CNU cerebra		cerebral nuclei
CTX cerebral		cerebral cortex
DMX		dorsal motor nucleus of the vagus nerve
DRG	dorsal root ganlion	
DRL	dorsal raphe nucleus, lateral part	
Gal		galanin
GFP	green fluorescent protein	
GRN	GRN gigantocellular reticular nucleus	
ΗY		hypothalamus
ILM	intralaminar nuclei of the dorsal thalamus	
int		internal capsule
MARN	1	magnocellular reticular nucleus
MB		midbrain
MD		mediodorsal nucleus of thalamus
MED	medial group of the dorsal thalamus	
MEV	midbrain trigeminal nucleus	
МОр	primary motor cortex	
MTN	midline group of the dorsal thalamus	
MY	medulla	
Nts	neurotensin	
NTS	nuclei of the solitary tract	
Р	pons	
PAG	periaqueductal gray	
	DLPAC	G dorsolateral PAG
	DMPA	G dorsomedial PAG
	LPAG	lateral PAG
	VLPAC	G ventrolateral PAG

PB		parabrachial nucleus
PDR		posterodorsal raphe nucleus
PF		parafascicular nucleus
PO		posterior complex of the thalamus
PPN		pedunculopontine nucleus
PRNc		pontine reticular nucleus, caudal part
ру		pyramid
RM		nucleus raphe magnus
RN		red nucleus
RO		nucleus raphe obscurus
RPA		nucleus raphe pallidus
RT		reticular nucleus of the thalamus
RVM		rostral ventromedial medullar
scp		superior cerebellar peduncles
sctv		ventral spinocerebellar tract
SSp		primary somatosensory cortex
	SSp-ll	SSp, lower limb
	SSp-tr	SSp, trunk
TH		thalamus
VAL		ventral anterior-lateral complex of the thalamus
VNC		vestibular nuclei
VPL		ventral posterolateral nucleus of the thalamus
VPM		ventral posteromedial nucleus of the thalamus

Materials and Methods

<u>Animals</u>

Two transgenic mouse lines that expressing Cre recombinase under the *Gal* or *Nts* promoter were used. The *Gal*-Cre mice (STOCK Tg(*Gal*-cre)K187Gsat/Mmucd, 031060-UCD) were initially imported from the Mutant Mouse Regional Resource Center (1). The *Nts*-Cre mice (B6;129-*Nts*^{tm1(cre)Mgmi}/J mice; Jackson Laboratory, Stock No. 017525) were acquired from the Jackson laboratory (2). Only male transgenic mice were used. All mice were raised on a 12-hour light/dark cycle (lights on at 7:00 am) at 22 °C~26 °C with *ad libitum* food and water. All behavioral tests were carried out during the light phase. Experiments were performed according to the guidelines of the Committee for Research and Ethical Issues of the International Association for the Study of Pain, and were approved by the Committee of Use of Laboratory Animals and Common facility, the Center for Excellence in Brain Science and Intelligence Technology, CAS, and the Guangdong Institute of Intelligence Science and Technology.

Viral tracer preparation

The H129 Δ TK-TT viral tracer was generously provided by Professor David J. Anderson (California Institute of Technology, Pasadena, CA). H129 Δ TK-TT viruses were massproduced by infecting Vero cells grown in T75 tissue culture flasks. After infected cells showed a prominent cytopathic effect (~2 days), medium containing the viruses was collected, centrifuged to remove cell debris (7,000 g for 10 min). The supernatant was passed through a 0.22 µm filter, and finally centrifuged at 50,000 g/3 hours using Beckman Avanti J-26SXP Ultracentrifuge. The virus pellet was resuspended overnight at 4 °C in a small amount of cold phosphate buffer saline (PBS). Dissolved viruses were aliquoted into 3 μ l and stored at -80 °C.

The titer of viral stocks was determined using standard plaque assay on Vero cells. Briefly, the assay was performed by serially diluting virus in Dulbecco's Modified Eagle Medium (DMEM) (Gibco) supplemented with 2% fetal bovine serum (Life Technologies) (2% DMEM) and overlaying infected cells with medium containing 2% fetal bovine serum, antibiotics (North China Pharmaceutical Co.), and 1% agarose (Biowest). Plaques were identified using neutral red staining and/or fluorescence microscopy. The titer of H129 Δ TK-TT viral stocks was ~ 6 × 10⁹ PFU/ml. A fresh aliquot of stock virus was thawed and used for each experiment.

Surgery for viral injection into the DRG

HSV infection was conducted in the laboratory at biosafety level 2. HSV was injected into the L5 DRG through a glass micropipette attached to a syringe driven by a Stoelting *kd* scientific pump. The syringe was mounted on an extended arm of a stereotaxic frame (RWD Life Science Co., Ltd) swung to the outside at a 30° angle. A volume of 850 nl of the viral vector solution was taken up into the micropipette. The micropipette was loaded separately with this volume for each injection.

Animals were anesthetized by isoflurane (RWD Life Science Co., Ltd) and mounted on a custom spine stabilizer (RWD Life Science Co., Ltd). Following an incision along the dorsal midline, the L5 DRG was exposed by removal of the lateral processes of the vertebrae. The glass micropipette was inserted into the exposed DRG. After a delay of 3 min to allow sealing of the tissue around the glass capillary tip, 800 nl virus solution was injected at a rate of 80 nl/minute. After a further delay of 5 min, the micropipette was removed. The residual of viral vector solution in the micropipette was discarded. Then, 1 mg/kg bortezomib (EMD Millipore Corp.) at the concentration of 0.1 mg/ml was administrated by intradermal injection. Animals were allowed to survive for 7 days prior to further experiments.

AAV2/8-DIO-CAG-EYFP (titer: 1.00E+12 v.g./ml, Brain Case, Shenzhen, China) injection was conducted in the laboratory at biosafety level 1. The procedure was the same as injection of HSV except animals were allowed to survive for 3 weeks prior to further experiments.

Inducing and examination of c-Fos

Mice were handled and acclimated to the experimental environment for 4 days, then housed separately for 24 hours to reduce the background of c-Fos expression. To examine c-Fos expression induced by noxious heat stimuli, each mouse was put on the hot-plate with the temperature setting at 45 °C or room temperature for 5 min. To examine the c-Fos expression induced by histamine administrated at the hind paw, animals were anesthetized by isoflurane (RWD Life Science Co., Ltd) for a short time, then 10 μ l of histamine (Sigma-Aldrich) at the concentration of 25 mg/ml or saline at the same volume was delivered into the left hind paw of each mouse. To examine the c-Fos expression induced by histamine distributes the c-Fos expression induced by histamine administrated at the same volume was delivered into the left hind paw of each mouse. To examine the c-Fos expression induced by histamine administrated at the back neck, mice were briefly removed from the test chamber and given intradermal injection at the back neck with histamine (500 μ g/50 μ l) or saline at a volume of 50 μ l. The perfusion was carried out 1.5-2 hours after stimuli.

Immunofluorescence staining

Mice were perfused with saline followed by 4% paraformaldehyde (PFA, Sigma-Aldrich). After the perfusion, the brain, spinal cord and/or DRG were dissected, and post-fixed in 4% PFA for overnight at 4 °C, followed by dehydration in 30% sucrose (Sinopharm Chemical Reagent Co., Ltd.). Free-floating sections of the brain (30 µm) were prepared for immunostaining. The cryostat sections of the DRG (10 µm) and spinal cord (20 µm) were mounted on slides immediately after sectioning. Tissue sections were blocked for 1 hour at room temperature in 0.5% Triton X-100 (Sigma-Aldrich) in PBS with 10% normal donkey serum (Jackson ImmunoResearch Inc.) and 0.1% gelatin (Sinopharm Chemical Reagent Co., Ltd.), followed by incubating with primary antibodies at 4 °C overnight and secondary antibodies at room temperature for 1 hour. The primary antibodies against RFP (1:1000, rabbit; MBL) and c-Fos (1:4000, Rb; CST) were used. The secondary antibodies were Cy3-conjugated donkey against rabbit antibodies (1:100; Jackson ImmunoResearch Inc.). Free-floating sections were counterstained with a fluorescent Nissl stain, Neuro Trace 435/455 (1:1000; Invitrogen) at room temperature for 1 hour.

Images were taken using an Olympus VS120 high-throughput microscope fitted with a 10× objective lens. Cell segmentation was carried out by particle analysis using Fiji (NIH). The results were manually corrected.

RNAscope ISH combined with immunofluorescence staining

The DRG slides were pretreated with hydrogen peroxide at room temperature for 10 min and washed with DEPC-ddH₂O twice. Then, slides were slowly immersed into boiling retrieval regent for 5 min and rinsed in the DEPC-ddH₂O. Then, slices were treated with ethanol for 3 min and dry completely at room temperature. Protease digestion was performed in the 40 °C hybridization oven for 10-15 min and rinsed in the DEPC-ddH₂O twice. Then the slides were hybridized with the pre-warmed probe at 40 °C for 2 hours. TSA-based signal amplification (570, 690 or FITC) at 40 °C for 30 min was followed, and the slices next were incubated with primary antibodies at 4 °C for overnight and secondary antibodies at room temperature for 1 hour. Finally, slides were mounted and image.

3D reconstruction and registration of brain slices

Fluorescent images at the interval of 120 µm were captured tile by tile so as to be assembled together as whole-brain images. TIFF files with signals of Nissl bodies were used for registration of assembled brains into 3D Allen CCFv3. The brain slices were registered to the Allen CCFv3 to depict the boundaries of brain regions and nuclei in slices. A reconstruction method of brain slices, which took brain atlas as the reference, was used to solve the problem of axial migration, which was also called z-shift problem. The reconstructed volume of brain slices could be well matched to the reference atlas in shape, size and position (3).

The OTSU algorithm was applied for image segmentation of labeled neurons in the brain. The binarized images were submitted for particle analysis using the Fiji (ImageJ, NIH). Thus, the coordinate of labeled neurons was determined. The results were checked manually using the LabelMe (<u>http://labelme.csail.mit.edu/Release3.0/</u>). Cell number in each nucleus was determined based on the registered coordinate of labeled neurons using a Python script written by ourselves. The Amira-Avizo Software (Thermoscientific) was used for data visualization.

Nuclei silencing and behavior tests

For inhibiting the neuronal activity of RN or NST, AAV2/9-Ef1α-DIO-hM4Di-mCherry (titer: 1.20E+13 v.g./ml, BrainVTA, Wuhan, China) mixed with AAV2/1-hSyn-Cre (titer: 1.05E+13 v.g./ml, BrainVTA, Wuhan, China) at the ratio of 10:1 was injected into left RN or NST. AAV2/9-Ef1α-DIO-mCherry (titer: 5.02E+12 v.g./ml, BrainVTA, Wuhan, China) mixed with AAV2/1-hSyn-Cre (titer: 1.05E+13 v.g./ml, BrainVTA, Wuhan, China) at the ratio of 10:1 was injected as a control. Injection sites for RN and NST were bregma: -3.39 mm, lateral: -0.75 mm, depth: -3.74 mm and bregma: -7.30, lateral: -0.51, depth: -4.36, respectively. All viruses were injected with a volume of 30 nl/site. Behavioral tests were performed at least 2 weeks after viral injection. Mice received intraperitoneal injection of 1 mg/kg Clozapine-n-oxide (CNO) (Sigma-Aldrich) 30 min before behavioral tests.

Hot plate test

Mice were handled and acclimated to the experimental environment for 3-4 days. On the test day, mice were put on the hot-plate with the temperature setting at 52 °C. The latency to jump, shake or lick the hind paw was measured. The cutoff time was set at 30 seconds.

Hargreaves test

Mice were habituated in plastic chambers, the radiant light was applied to the right hind paw of mice when they were resting quietly, and the latency to paw withdraw was measured. The cutoff time was set at 20 seconds.

Itch behavioral test

Before experiments, mice were given 30 min to acclimate to the test chamber before treatment. Mice were briefly removed from the test chamber and given intradermal

injection at the back neck with histamine (500 μ g/50 μ l), 5-HT (10 μ g/50 μ l) or saline at a volume of 50 μ l. Hindlimb scratching behavior directed toward the injection site was observed for 30 min. A bout of scratching was defined as a lifting of the hindlimb and a fall back of the limb back to the floor. Scratching behavior was qualified by counting the number of scratching bouts over the 30 min recording period. All videos were analyzed by trained investigators blinded to the experimental treatment of the animals.

Measurement of heart rate and blood pressure

Mice were handled and acclimated to the experimental environment for 2 days. Then, mice were restrained and warmed in a soft tube. Indirect blood pressure and heart rate measurements were performed in conscious, restrained mice by tail-cuff plethysorgraphy (BP-2010A, Softron Biotechnology, Beijing, China). The machine monitored the state of an animal automatically and started measurements once the animal was calm down. We used systolic blood pressure for analysis since it was more precise than diastolic blood pressure when using the tail-cuff method. Heart rate was quantified by beats per min (bpm). *Open field test*

Mice were acclimated to the experimental environment for 1 hour. Then mice were put into an open field (45×45 cm) for measurement of exploratory locomotor activity in a 15 min period by a Digiscan apparatus (Accuscan Electronics). The total distance of moving during the whole procedure was recorded. Mean velocity was determined by the distance of moving in a period of time.

Rotarod

Mice from each group were pretrained for adaptation. On the test day, mice were acclimated to the experimental environment for 1 hour. Then locomotor coordination and

balance were measured by placing mice on an accelerating, 3 cm diameter and rotating drum for three trials. The minimum interval between trials was 30 min. The rotarod started at 4 rpm and increased to 30 rpm over a 5 min period. The latency to fall was recorded.

Statistical analysis

Statistical analysis was performed using Prism 8 and RStudio v1.2.5019. Pearson correlation was used to determine the similarity of labeling pattern among neural networks. The data were compared using unpaired t-test. The cutoff for significance was held at P = 0.05.

SI Reference

- 1. Z. Wu, A. E. Autry, J. F. Bergan, M. Watabe-Uchida, C. G. Dulac, Galanin neurons in the medial preoptic area govern parental behavior. *Nature* **509**, 30 (2014).
- 2. G. M. Leinninger *et al.*, Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. *Cell Metab.* **14** (2011).
- H. Ni *et al.*, A robust image registration interface for large volume brain atlas. Scientific reports 10, 17 (2020).