
ORIGINAL ARTICLE

1244
Kallikrein 7 Promotes Atopic
Dermatitis-Associated Itch Independently
of Skin Inflammation

Changxiong J. Guo1,2,5, Madison R. Mack2,3,5, Landon K. Oetjen2,3, Anna M. Trier2,3,
Martha L. Council3, Ana B. Pavel4, Emma Guttman-Yassky4, Brian S. Kim1,2,3 and Qin Liu1,2
Atopic dermatitis (AD) is a highly prevalent, itchy inflammatory skin disorder that is thought to arise from a
combination of skin barrier defect and immune dysregulation. Kallikreins (KLK), a family of serine proteases
with a diverse array of homeostatic functions, including skin desquamation and innate immunity, are hy-
pothesized to contribute to AD pathogenesis. However, their precise role in AD has not been clearly defined.
In this study, RNA sequencing analyses identified KLK7 as the most abundant and differentially expressed KLK
in both human AD and murine AD-like skin. Further, in mice, Klk7 expression was localized to the epidermis in
both steady state and inflammation. Unexpectedly, KLK7 was dispensable for the development of AD-
associated skin inflammation. Instead, KLK7 was selectively required for AD-associated chronic itch. Even
without the alleviation of skin inflammation, KLK7-deficient mice exhibited significantly attenuated scratching,
compared with littermate controls, after AD-like disease induction. Collectively, our findings indicate that KLK7
promotes AD-associated itch independently from skin inflammation and reveal a previously unrecognized
epidermal-neural mechanism of AD associated itch.
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INTRODUCTION
Atopic dermatitis (AD) is a chronic and relapsing inflamma-
tory skin disorder that affects 10e20% of the population
(DaVeiga, 2012; Silverberg, 2017). In moderate or severe
forms, the crusted, oozing, and itchy skin lesions can
dramatically lower the quality of life for patients with AD
(Drucker et al., 2017). Although chronic itch (pruritus) is
considered the central and most debilitating symptom of AD,
treatments have almost exclusively targeted pro-
inflammatory mediators, rather than specific pruritogenic
pathways.

AD is currently thought to arise from a combination of skin
barrier dysfunction and immune dysregulation (Brunner
et al., 2018; Czarnowicki et al., 2019; Elias et al., 2008).
Many recent studies have focused on how epidermal barrier
defects (e.g., filaggrin mutations) lead to the initiation of
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allergic inflammation, characterized by the recruitment and
activation of T helper type 2 cells, group 2 innate lymphoid
cells, and basophils in the affected skin (Esaki et al., 2015;
Howell et al., 2007; Kim, 2015; Mashiko et al., 2017;
Palmer et al., 2006). These cells, in turn, produce the hall-
mark type 2 effector cytokines, IL-4, IL-5, and IL-13, which
are central to AD immune dysregulation (Brandt and
Sivaprasad, 2011; Guttman-Yassky et al., 2019). However,
despite our increasing understanding of the inflammatory
pathogenesis of AD, the molecular mechanisms of AD-
associated itch remain poorly defined.

The kallikrein (KLK) family of serine proteases is hypothe-
sized to be a significant contributor to AD pathology. A
number of KLKs are reported to be enriched in the lesional
AD skin of humans (Komatsu et al., 2007, 2005; Morizane
et al., 2012; Vasilopoulos et al., 2011) and may contribute
to AD-associated pruritus in patients (Nattkemper et al.,
2018). Moreover, the overexpression of KLKs in murine skin
can spontaneously lead to an AD-like disease (Briot et al.,
2009; Hansson et al., 2002).

In humans, the KLK family is comprised of 15 structurally
conserved members (KLK1e15) that are involved in an array
of homoeostatic and disease processes across a wide variety
of tissues (Shaw and Diamandis, 2007; Sotiropoulou et al.,
2009). In healthy human skin, serine peptidase activity in
the stratum corneum is mainly attributed to the trypsin-like
KLK5 (Deraison et al., 2007; Ekholm et al., 2000) and the
chymotrypsin-like KLK7 (Borgoño et al., 2007; Caubet et al.,
2004; Yousef et al., 2000), which help maintain barrier ho-
meostasis by regulating the cleavage of corneodesmosomes.
Notwithstanding this, a number of other KLKs may also be
present in lower abundance and have related functions
(Borgoño et al., 2007; Komatsu et al., 2007, 2005, 2003).
uthors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.
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Figure 1. KLK7 is overexpressed in

human lesional AD skin. (a) Heatmap

of z-scored RPKMs of differentially

expressed genes with > 2-fold change,

adjusted P < 0.05, and base mean

expression level > 1,000. (b) RPKMs

of all human KLKs present in skin

samples of control and AD

individuals. N ¼ 4 per group. (cee)

RT-qPCR of (c) KLK5 and (d) KLK7 in

human control and AD skin,

normalized to (e) ACTB. N ¼ 8e10

per group. Error bars ¼ standard error

of the mean. *P < 0.05. **P < 0.01.

AD, atopic dermatitis; KLK, kallikrein;

n.s, no significance; RPKM, reads per

kilobase of transcript, per million

mapped reads; RT-qPCR, quantitative

reverse transcriptaseePCR.
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All KLKs are translated as preepro-enzymes and secreted
into the extracellular space as inactive zymogens. There, they
are activated by a variety of mechanisms, including auto-
catalytic activity, endopeptidases, or by other KLKs
(Sotiropoulou et al., 2009). In the skin, KLK activity is further
controlled by a number of homeostatic processes, including
the endogenous activity of serine protease inhibitors (ser-
pins), such as lymphoepithelial Kazal-type inhibitor encoded
by SPINK5 (Deraison et al., 2007). In the setting of AD, it is
hypothesized that the over activity of epidermal KLKs set off a
cascade of proteolytic activity, which in turn contributes to
barrier defects and AD pathogenesis.

In lesional AD skin, a number of KLKs, including KLK5 and
KLK7, have been shown to be increased (Brunner et al.,
2017; Komatsu et al., 2007; Morizane et al., 2012;
Vasilopoulos et al., 2011). Furthermore, the transgenic over-
expression of Klk5 or Klk7 in mice resulted in the sponta-
neous development of AD-like disease features (Briot et al.,
2009; Furio et al., 2014; Hansson et al., 2002). Likewise,
loss-of-function mutations in SPINK5 resulted in unregulated
epidermal KLK activity and Netherton Syndrome, a severe
AD-like syndrome, in both mice and humans (Chavanas
et al., 2000; Descargues et al., 2005). In mice, the symp-
toms of Netherton Syndrome can be prevented by the genetic
ablation of Klk5 and Klk7 (Kasparek et al., 2017). Although it
is becoming increasingly clear that KLK dysregulation con-
tributes to AD pathogenesis, the mechanisms underlying this
process remain poorly defined.

In this study, we demonstrate that KLK7, but not KLK5, is
upregulated in human and murine lesional AD skin. Further,
we show that basal and AD-associated KLK7 expression is
restricted to the epidermis, provoking the hypothesis that
epithelial cell-derived KLK7 is critically required for the
development AD. Surprisingly, we found that KLK7-deficient
mice had no improvement in AD-like skin disease severity
but showed markedly attenuated AD-associated itch. These
findings demonstrate a previously unrecognized role for
KLK7 in mediating itch in the context of AD, and provide
additional insight into KLK function in disease states.

RESULTS
KLK7 is upregulated in human AD lesions

Both human AD and murine AD-like disease are character-
ized by several shared histological and immunological fea-
tures. At the molecular level, these include a variety of KLKs
upregulated in lesional AD skin (Komatsu et al., 2007).
However, which KLKs are selectively and critically upregu-
lated remains to be defined.

In this study, we reanalyzed a previously published RNA
sequencing (RNA-Seq) dataset of human control and lesional
AD skin for the top differentially expressed genes by fold
change and expression level (Oetjen et al., 2017). Unbiased
analysis of the most abundant differentially expressed genes
identified KLK7 as the only KLK that was differentially upre-
gulated in human AD skin (Figure 1a). Other keratinocyte-
associated genes, such as the S100A family members,
CAPN1, and CASP14, were also enriched in AD skin
(Figure 1a). Comprehensive analysis of all the KLKs in this
dataset demonstrated that, consistent with prior studies, KLK5
and KLK7 are the most highly expressed KLKs in control hu-
man skin, accounting for two-thirds of the total KLK transcripts
in control biopsies (Figure 1b). In addition, four KLKs—KLK7,
KLK8, KLK10, and KLK11—showed statistically significant
expression increases in lesional AD skin, with KLK7 exhibiting
the most prominent overexpression. Changes in KLK8, KLK10,
and KLK11 expression were comparatively less pronounced.
Surprisingly, KLK5 expression was unchanged.

Our finding that KLK7 is selectively overexpressed in
lesional AD skin compared with KLK5 was further confirmed
using additional sets of human control and AD skin samples.
Using quantitative reverse transcriptaseePCR (RT-qPCR), we
confirmed that KLK7, but not KLK5, was significantly
www.jidonline.org 1245
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Figure 2. Klk7 is overexpressed in

lesional murine AD-like skin. (a)

Schematic of murine AD model.

Control skin tissues were taken from

nonlesional skin caudal to the treated

area. (b) Representative hematoxylin

& eosin section of control and lesional

mouse skin after six MC903

treatments. Note the presence of

hyperkeratosis (a), acanthosis (b), and

mixed lymphocyte infiltration (c) that

define human AD lesions. N ¼ 3

biological pairs. (c) Mice develop

severe spontaneous scratching

behavior directed at the treated site

after the MC903 treatment. Statistical

comparisons are made against

baseline scratching. N ¼ 6 mice. (d, e)

RNA-Seq of mouse control (ethanol

vehicle) and MC903-treated skin,

N ¼ 3e4 mice per group. (d) Heatmap

showing z-scored RPKMs of genes

differentially expressed by � two-fold,

adjusted P < 0.05, and base mean

expression values � 1,000. (e) RPKM

values of all the Klks expressed in skin

samples of control- and MC903-

treated mice. (feh) RT-qPCR of (f) Klk5

and (g) Klk7 expression in mouse

control- and MC903-treated skin

normalized to (h) Gapdh. N ¼ 3

biological pairs. Error bars ¼ standard

error of the mean. *P < 0.05. **P <

0.01. ***P < 0.001. Bars ¼ 200 mm.
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enriched in lesional AD skin (Figure 1cee). Additionally, we
looked specifically at matched lesional and nonlesional sites
in another cohort of 35 patients with AD by RNA-Seq
(Supplementary Figure S1a and b). Consistent with the ob-
servations from our other cohorts, we found no increases in
KLK5 expression in lesional AD skin in this dataset
(Supplementary Figure S1a). Moreover, we confirmed that
KLK7 mRNA is significantly elevated in lesional AD skin,
compared with matched nonlesional sites (Supplementary
Figure S1b). However, the variations in KLK7 levels within
lesional tissues did not significantly correlate with patient-
reported itch severity (Supplementary Figure S1c). Based on
these results, we hypothesized that KLK7 may be a key driver
in AD disease pathogenesis.

Klk7 is upregulated in murine AD-like lesions

Since KLKs are highly conserved across mammalian species
(Pavlopoulou et al., 2010), we explored whether Klk7
expression is also dysregulated in murine AD-like skin. To test
this, we employed a well-established model of AD-like dis-
ease, in which mice are treated with the topical irritant
MC903 (calcipotriol) (Li et al., 2006) (Figure 2a). Following
Journal of Investigative Dermatology (2020), Volume 140
MC903 treatment, mice develop the histopathologic features
of AD (Figure 2b), as well as chronic itch behavior
(Figure 2c).

To define the expression status of Klk7 in mouse AD-like
skin, we reanalyzed a previously published RNA-Seq data-
set of MC903-treated murine AD-like skin (Oetjen et al.,
2017). Using the same unbiased analysis technique, we
identified Klk7 among the top most abundant differentially
expressed genes in murine AD-like skin (Figure 2d). A
comprehensive analysis of all the Klks in this dataset
demonstrated that, like human skin (Figure 1), Klk7 was the
most highly expressed Klk in control skin, accounting for
66.9% � 1.43% of the total Klk transcripts. Moreover, seven
Klks e Klk6, Klk7, Klk8, Klk9, Klk10, Klk11, and Klk13 e
showed statistically significant increases in expression in
murine AD-like skin (Figure 2e). Similar to our findings in
human AD skin, Klk7 was the most abundant transcript and
demonstrated a four-fold increase in expression in AD-like
skin (Figure 2e). Klk5 expression, again, was unchanged in
this context (Figure 2e). These findings were further validated
with additional samples by RT-qPCR. Klk7, but not Klk5, was
significantly enriched in AD-like skin (Figure 2feh).



Figure 3. Klk7 deficiency does not cause defects in AD-associated immune response. (a) X-gal staining of nape skin from Klk7LacZ mice without treatment

(control) and after treatment with MC903. (b) Representative images of AD-like disease induction in control (wild-type) and Klk7 -/- mice after 6 days of MC903

treatment; N � 8 mice per group. (c) Representative H&E-stained sections of MC903-treated skin of control and Klk7 -/- mice; N ¼ 4 mice per group. (d)

Histological grading of H&E-stained sections of control and Klk7 -/- mouse skin; N ¼ 4 mice per group. (eei) Flow cytometric analysis of AD-associated (e) ILC2,

(f) eosinophil, (g) mast cell, (h) basophil, and (i) Th2 cell frequency in MC903-treated nape skin from control and Klk7 -/- mice on day 6 of treatment; n ¼ 5 mice

per group. Error bars ¼ standard error of the mean. Scale bars ¼ 200 mm. AD, atopic dermatitis; H&E, hematoxylin and eosin; ILC2, group 2 innate lymphoid

cell; n.s., no significance; Th2, T helper type 2; WT, wild-type; X-gal, 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside.
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Based on the consistent KLK7 upregulation in AD skin of
both humans and mice, we sought to investigate the mech-
anisms by which KLK7 promotes AD-like disease pathogen-
esis in vivo.

Epidermal Klk7 expression is enhanced in AD-like disease
and promotes itch but not inflammation

Klk7 expression is highly conserved between mice and
humans and is mainly restricted to the skin in both species
(Fagerberg et al., 2014; Pavlopoulou et al., 2010). In the
steady state, murine Klk7 expression is largely restricted to
epidermal skin and is undetectable in dermal skin, neural,
and immune tissues (Figure 3a and Supplementary Figure S2).
After the induction of AD-like disease, Klk7, detected using a
LacZ-b-galactosidase reporter, was selectively enhanced in
the epidermis, but remained undetectable in the dermis
where infiltrating immune cells and peripheral fibers of sen-
sory neurons are present (Figure 3a). Taken together, these
findings indicate that the epidermis is the primary source of
Klk7 in the skin, in both homeostatic and inflammatory
conditions.
www.jidonline.org 1247
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Figure 4. Klk7 is required for the development of AD-associated itch. (a)

Spontaneous scratching after MC903 nape treatment in control and Klk7 -/-

mice; N > 8 per group. (b, c) (b) Representative immunofluorescent images

and (c) quantification of phosphorylated ERK staining in DRG innervating

MC903-treated nape skin of control and Klk7 -/- mice; N ¼ 3 mice per group.

(d, e) (d) Representative immunofluorescent images and (e) quantification of

c-Fos staining in thoracic spinal cords of MC903-treated control and Klk7 -/-

mice on day 6 of treatment; N ¼ 3 mice per group. Error bars ¼ standard error

of the mean. *P<0.05. ***P<0.001. Scale bars ¼ 200 mm. Bl, baseline; DRG,

dorsal root ganglia; ERK, mitogen-activated protein kinase 3/1; MC903,

calcipotriol; WT, wild-type.
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To directly investigate the contribution of KLK7 to AD-like
skin disease, we generated the MC903-induced AD-like
disease model using Klk7-/- mice. Surprisingly, compared
with the wild-type controls, Klk7-/- mice did not exhibit a
significant reduction in disease severity as measured by
redness, edema or papulation, scaling, and lichenification
(enhanced skin lines) (Figure 3b). Additionally, histological
analyses did not demonstrate any difference between groups
by clinical grading (Figure 3ced). A flow cytometric analysis
of the skin from control and Klk7-/- mice also did not reveal
any difference in the frequency of key inflammatory cells
(Figure 3eei).
Journal of Investigative Dermatology (2020), Volume 140
Additional quantification of T helper type 2 cells and
inflammatory markers did not reveal any detectible
differences between MC903-treated control and Klk7-/-

mice. Serum IgE and TARC/CCL17 levels, as detected by
ELISA, were similar between the genotypes (Supplementary
Figure S3aeb). The Il4ra, Il4, and Il13 expression levels in
MC903-treated lesional skin, as detected by RT-qPCR, were
also not different between the control and Klk7-/- mice
(Supplementary Figure S3cee). Lastly, Tslp expression in
the skin was strongly induced by MC903 treatment as ex-
pected, but was expressed at similar levels between the
genotypes at both basal and diseased states (Supplementary
Figure S3f).

Despite the lack of observable differences in skin inflam-
mation and key inflammatory markers, spontaneous
scratching was markedly reduced in Klk7-/- mice, when
compared with controls (Figure 4a). On average, Klk7-/- mice
scratched two to three times less than the controls and
demonstrated a mean of 61.33 � 10.24 bouts per 30 minutes,
versus 186.13 � 25.89 bouts per 30 minutes for the control
mice on day 6 of treatment (Figure 4a). These findings were
recapitulated in a 12-day ear treatment model, in which
Klk7-/- mice exhibited a similar reduction in itch
(Supplementary Figure S4).

Given the striking itch phenotype, we examined
whether sensory neuron activation was correspondingly
attenuated in Klk7-/- mice under AD-like conditions.
Although rarely detectible in primary afferents at baseline,
mitogen-activated protein kinase 3/1 phosphorylation can
be transiently induced in dorsal root ganglia (DRG) neu-
rons by intense stimulation or under chronic pathological
conditions (Gao and Ji, 2009). Upper thoracic DRGs
that innervate the inflamed skin showed a substantially
diminished proportion of phosphorylated mitogen-activated
protein kinase 3/1 immunoreactive neurons in Klk7-/-

mice, compared with the control mice (2.11 � 0.34% vs
4.00 � 0.60%, respectively) (Figure 4bec), indicating that
the activation and sensitization of peripheral sensory
neurons were significantly attenuated in Klk7-/- mice.
Likewise, c-Fos expression, which is induced by the strong
and sustained activation of spinal dorsal horn neurons
(Gao and Ji, 2009), was significantly decreased in the
thoracic spinal cords of Klk7-/- mice, most notably in
lamina I and II where itch-sensing c-fiber DRG neurons
project (Han et al., 2013) (Figure 4dee). These findings
indicate that, along with a reduction in behavioral itch
(Figure 4a), sensory neuron activation is significantly
attenuated in Klk7-/- mice in the context of AD. Collec-
tively, our findings demonstrate that the epidermis is the
major source of Klk7 and reveal a previously unrecog-
nized epithelial-neural circuit by which Klk7 specifically
mediates AD-associated itch.

DISCUSSION
KLKs are highly conserved across species, widely expressed
throughout many organ systems, and exhibit heterogeneity
in their composition across tissues (Pavlopoulou et al.,
2010; Sotiropoulou et al., 2009). As serine proteases,
they are involved in a diversity of both homeostatic and
pathologic processes. In the skin, their primary role is to
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mediate desquamation (Ekholm et al., 2000). Both KLK5
and KLK7 have been shown to be key mediators of cor-
neodesmosomal cleavage and epithelial turnover (Caubet
et al., 2004). While a number of KLKs, including KLK5
and KLK7, have been shown to be upregulated in lesional
AD skin from patients (Brunner et al., 2018; Komatsu et al.,
2007; Morizane et al., 2012; Vasilopoulos et al., 2011),
their precise role in AD pathogenesis remains unclear. In
this study, we provide three conceptual advances that
clarify the contributions of KLKs to AD. First, using an
unbiased RNA-Seq analysis, we discovered that KLK7 is
selectively upregulated in the lesional AD skin of both
mice and humans. Second, we show that, despite its
abundant expression in the skin, Klk7 is dispensable for the
development of AD-associated inflammation. Third, the
epidermal expression of Klk7 is selectively required for AD-
associated itch. Importantly, these findings demonstrate an
emerging paradigm in itch biology, that itch mediators may
be separate from the mechanism driving AD-like skin
inflammation.

The induction of the type 2 cytokines IL-4 and IL-13 criti-
cally promote AD-associated skin inflammation and itch
(Oetjen and Kim, 2018; Trier and Kim, 2018). Additionally,
clinical trials with dupilumab, an anti-IL-4Ra monoclonal
antibody, have demonstrated rapid and marked improvement
of itch symptoms in patients with AD (Beck et al., 2014;
Guttman-Yassky et al., 2019; Simpson et al., 2016; Thaçi
et al., 2016). Recent studies have shown that both IL-4 and IL-
13 induce selective expression of KLK7 but not KLK5 in
normal human epidermal keratinocyte cells (Morizane et al.,
2012). Thus, whether there is a type 2 cytokine-epithelial-
KLK circuit promoting itch remains a promising area of
future inquiry.

Although prior studies have reported the broad upregu-
lation of a number of KLKs in AD skin (Komatsu et al., 2007;
Vasilopoulos et al., 2011), our gene expression analysis only
identified KLK7 as the predominant KLK in both mouse and
human AD skin. Despite previous reports that KLK5 is
upregulated in human AD skin (Komatsu et al., 2007) and
implicated in the promotion of AD-like disease in mice
(Briot et al., 2009; Furio et al., 2014), we consistently could
not detect KLK5 upregulation in AD skin. This may be in part
due to the complexity of AD disease, with varying stages
(acute vs chronic), levels of severity, and genetic- and age-
dependent heterogeneity. For example, mutations in filag-
grin vary considerably across ethnicities, and there is
emerging evidence that immune profiles in AD are also
sensitive to the genetic background of individuals
(Czarnowicki et al., 2019; Kaufman et al., 2018; Leung,
2015; Margolis et al., 2014; Osawa et al., 2011). Future
studies focused on understanding the differential contribu-
tions of KLK5 and KLK7 to skin inflammation and itch are
therefore warranted. Additionally, it is widely appreciated
that KLKs can activate one another (Sotiropoulou et al.,
2009). Thus, understanding how KLK7 may interact with
other KLKs to regulate the development of AD-associated
itch is an intriguing area of investigation.

Prior studies have shown that the overexpression of Klk7
was particularly notable for the development of severe itch
associated with cutaneous inflammation (Hansson et al.,
2002). Despite these advances, whether KLK-mediated itch
occurs indirectly through the induction of skin inflammation or
directly by acting on sensory neurons was unknown. Our
finding that Klk7 deficiency attenuates AD-associated itch with
no effect on inflammation provokes the hypothesis that this
phenomenon occurs through direct epidermal-neuronal
mechanisms. It has previously been shown that KLK5 can
proteolytically activate PAR2 receptors, which have been
heavily implicated in itch (Liu et al., 2011; Shimada et al.,
2006; Stefansson et al., 2008). However, KLK7 does not
exhibit this function (Supplementary Figure S5) (Stefansson
et al., 2008) or the ability to induce significant behavioral
response or neuronal activation in naı̈ve mice (Supplementary
Figure S6aec). Thus, whether KLK7 generates endogenous
pruritogens or if KLK7 can proteolytically sensitize neuronal
itch receptors in AD skin remains open to further exploration.

In conclusion, therapeutic agents targeting KLK7 may be
able to provide substantial itch relief for patients with AD.
Owing to the specificity of KLK7 expression in epidermal
skin, KLK7 antagonists could be used topically on affected
AD skin to avoid potential side effects. Moreover, given the
unique chymotrypsin-like functionality of KLK7, in contrast
to the trypsin-like properties of other KLKs, redundancy and
compensation by other KLKs is also less likely following
pharmacologic KLK7 inhibition. These findings open
exciting avenues for the exploration and development of
novel therapeutics that target KLKs in the setting of AD and
its associated itch.

MATERIALS AND METHODS
Animals

C57BL/6NJ wild-type mice were purchased from The Jackson Lab-

oratory (Bar Harbor, ME). Klk7tm1(KOMP)Vlcg sperm was purchased

from the UC Davis KOMP repository (Davis, CA). IVF was performed

by the Washington University School of Medicine Molecular Ge-

netics Service Core. PirtGCaMP3/þ mice were a gift from Dr. Xinzhong

Dong at Johns Hopkins University. All researchers were blinded to

mouse genotypes throughout testing and data quantification.

Human sample collection

AD diagnosis was made by a board-certified dermatologist using

the American Academy of Dermatology recommended criteria

(Eichenfield et al., 2014). Biopsy samples were collected from

consenting patients in clinics. Control tissues were either ob-

tained from individuals without a history of inflammatory skin

conditions or from healthy skin margins from patients undergoing

Mohs surgery. All the skin samples were de-identified and stored

in RNAlater (ThermoFisher, Waltham, MA) at e80�C before

processing.

Mouse Tissue Collection

For reverse transcriptaseePCR and RT-qPCR, the mice were eutha-

nized via carbon dioxide overdose, and tissues were dissected and

stored in ice cold RNeasy Kit Lysis Buffer (Qiagen, Hilden, Ger-

many). Samples were processed for RNA extraction immediately

after dissection.

For histopathology and LacZ staining, the mice were trans-

cardially perfused with ice cold phosphate buffered saline and 4%

paraformaldehyde (PFA) for fixation. Dissected tissues were fixed

on ice as follows: skin in 1% PFA for 1 hour, DRG and trigeminal

ganglia in 2% PFA for 30 minutes, spinal cord in 2% PFA for 1 hour,
www.jidonline.org 1249
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and brain in 2% PFA for 2 hours. After fixation, the tissues were

immersed in 30% sucrose for 24 hours at 4�C and embedded in

O.C.T. (Sakura, Torrance, CA) for frozen sectioning. Mouse DRGs

and spinal cords used for immunostaining were fixed in 4% PFA on

ice for 90 minutes before sucrose incubation and frozen sectioning.

For flow cytometry, the skin was harvested without fixation and

processed immediately.

For ELISA, mouse serum was isolated from blood collected by

orbital bleed by centrifugation at 10,000g for 10 minutes at 4�C on

experimental day 6. ELISAs for IgE (Biolegend 432404, San Diego,

CA) and TARC/CCL17 (R&D DY529-05, Minneapolis, MN) were

performed according to the manufacturers’ instructions.

Hematoxylin and eosin, X-Gal, and immunofluorescence
staining

O.C.T.-embedded mouse samples were sectioned on a Leica (Buf-

falo Grove, IL) cryostat. Brain sections were processed as floating

sections, whereas other tissues were slide-mounted. Hematoxylin

and eosin staining was performed by the Washington University

School of Medicine Pulmonary Morphology Core. Images were ac-

quired using a BX63 microscope (Olympus, Waltham, MA). The

clinical grade was determined using a previously published protocol

(Kim et al., 2014).

The tissues used for LacZ and immunofluorescence staining

were allowed to air dry for 2 hours before processing. For LacZ

staining, the slides were fixed on ice in 1% PFA for 1 minute.

Chromogenesis was performed using the X-Gal Staining Assay Kit

(Genlantis, San Diego, CA) according to the manufacturer’s in-

structions. The color development time was approximately 6

minutes. Sections were dehydrated and mounted using Thermo-

Fisher Permount.

For phosphorylated mitogen-activated protein kinase 3/1 and

c-FOS immunofluorescence staining, the slides were blocked

using 10% normal goat serum (MilliporeSigma, Burlington, MA)

and incubated in primary antibodies overnight at 4�C. After-

wards, the slides were incubated in fluorescent secondary anti-

body for 2 hours at room temperature and mounted using

Fluoromount-G (SouthernBiotech, Birmingham, AL). Images

were acquired using a Ti-E microscope (Nikon, Melville, NY).

The antibodies used were rabbit antiephospho-p44/42 mitogen-

activated protein kinase (Thr202/Tyr204) monoclonal antibody

(CST, Danvers, MA), rabbit antiec-Fos polyclonal antibody

(Calbiochem, San Diego, CA), goat anti-Rabbit IgG (HþL), and

Alexa Fluor 488 conjugated secondary (ThermoFisher, Waltham,

MA). All the antibodies were diluted 1:1,000 in phosphate

buffered saline with 1% Tween-20 and 1% normal goat serum.

RNA isolation, reverse transcriptaseePCR, and RT-qPCR

RNA-Seq was performed and analyzed as previously described

(Oetjen et al., 2017). Briefly, for RNA-Seq, 1 mg of total RNA was

enriched with RiboZERO (Illumina, San Diego, CA) and sequenced

on an Illumina HiSeq3000. Sequences were aligned with STAR

(Dobin et al., 2013), counted with Subread:featureCount (Liao et al.,

2014), and differential gene expression was determined by the

DESeq2 package (Love et al., 2014) in R version 3.5.

The samples for reverse transcriptaseePCR and RT-qPCR were

homogenized in lysis buffer supplied with the Qiagen RNeasy Kit

using a bead homogenizer. RNA extraction was performed using the

same kit, according to the manufacturer’s instructions. Samples were

then treated with ThermoFisher Turbo DNase, and cDNA was

generated using approximately 1,000 ng of total RNA and an ABI
Journal of Investigative Dermatology (2020), Volume 140
High-Capacity cDNA Reverse Transcription Kit (ABI, Waltham, MA).

Reactions without reverse transcriptase were included as negative

controls for downstream PCR.

Reverse transcriptaseePCR was performed using Qiagen Hot-

StarTaq Polymerase and 10 ng of template. The images presented are

representative of the results of 30 PCR cycles. RT-qPCR was per-

formed using ABI Fast Sybr Green Master Mix and a Step-One Plus

Real-Time PCR System. All reactions were run as technical triplicates

using 10 ng of cDNA template, and the presented data were

normalized to ACTB (for human samples) or Gapdh (for mouse

samples) expression. The primers used are listed in Supplementary

Table S1.

MC903 treatment and mouse behavior

The murine AD model was adapted from previous publications (Kim

et al., 2014, 2013; Li et al., 2006; Oetjen et al., 2017). In the nape

model, the nape and lower back areas (approximately 17 mm � 17

mm each) were shaved under isoflurane anesthesia 3 days before

baseline behavioral recording. Test animals were habituated for two

consecutive days immediately preceding baseline recording. To

induce AD-like disease, 40 ml of 0.1 mM MC903 in ethanol was

applied topically to the shaved nape skin under anesthesia once

every 24 hours, starting 24 hours after baseline recording, for six

consecutive days. Spontaneous scratching was scored for four

consecutive days, starting 4 days after the baseline recording.

Scratching bouts, defined as a continuous scratch movement

directed at the treated skin by the hind paw, were scored from video

recordings after the completion of the experiment. For the ear

model, mice were treated with 40 ml of 0.05 mM MC903 on each

ear under anesthesia for 8 days. The ear thickness was determined

daily with a dial caliper.

Flow cytometry

Flow cytometry was performed as previously described (Oetjen

et al., 2017). Briefly, harvested tissues were digested in 0.25 mg/

ml Liberase TL (Roche, Switzerland) in DMEM media for 90 minutes

at 37�C. Afterwards, the tissues were mechanically dissociated and

passed through 70 mm cell strainers to obtain a single cell suspen-

sion. The cells were then stained with ZombieUV (Biolegend) at

room temperature for 20 minutes, followed by primary antibodies

(Supplementary Table S2) on ice for 30 minutes. Biolegend

streptavidin-FITC and streptavidin-PE secondary stains were per-

formed on ice for 30 minutes. Samples were acquired on an

LSRFortessa X-20 (BD, Franklin Lakes, NJ).

Calcium imaging

Calcium imaging was performed as previously described (Huang

et al., 2018; Oetjen et al., 2017). In brief, KNRK cells stably

expressing hPAR2 receptors (KNRK-PAR2) were seeded onto cover

slips precoated with 0.1 mg/ml poly-D-lysine (Corning, Corning,

NY) and cultured overnight in DMEM complete medium. Primary

cultures of DRG neurons from PirtGCaMP3/þ mice were acutely

extracted and dissociated in dispase II and collagenase I enzyme

mixture from ThermoFisher. Dissociated DRG neurons were then

seeded onto coverslips precoated with poly-D-lysine and 0.01 mg/

ml laminin (Corning) and cultured overnight in DH10 media sup-

plemented with 25 pg/ml NGF (Corning) and 50 pg/ml GDNF (R&D

Systems).

Approximately 24 hours after seeding, KNRK cells were loaded

with Fura2-AM (Fisher) and imaged at 340 and 380 nm excitation.

DRG neurons were imaged at 488 nm excitation. Images were
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acquired using a Nikon (Melville, NY) Ti-E microscope with a

Photometrics (Tucson, AZ) HQ2 camera. rhKLK7 (R&D Systems) and

trypsin (ThermoFisher) were bath applied. Ratios of 340/380 nm and

quantified green fluorescent protein fluorescence were determined

using Nikon NIS AR software.

Data analysis

All data are presented as the mean � standard error of the mean.

Statistical significance for the two groups was determined using a

two-tailed, unpaired Student’s t test. The differences between three

or more groups were tested using a one-way analysis of variance,

followed by two-tailed Student’s t tests. Differences were considered

significant if P < 0.05. Flow cytometry data was analyzed with

Treestar (Ashland, OR) Flowjo v10. Graphs were generated using

Graphpad (San Diego, CA) Prism 8 and R version 3.5 (Vienna,

Austria).
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Supplementary Figure S1. KLK7, but

not KLK5, is upregulated in human

lesional AD skin. (a) Log2 read CPM of

KLK5 in control skin from donors

without AD (N ¼ 20, age ¼ 36.8 �
2.4 years, 42.9% female), and

matched pairs of NL skin and LS from

donors with AD (N ¼ 35, age ¼ 34.3

� 2.5 years, 50% female). (b) Log2
CPM of KLK7 in the same RNA-Seq

data set. Note that KLK7 is

overexpressed only in LS from donors

with AD. *P < 0.05. **P < 0.01. (c)

Pearson correlation between KLK7

transcript abundance in lesional skin

and the VAS itch scores from patients

with AD. R ¼ 0.22 (CI ¼ e0.13 to

0.52), P ¼ 0.22. Error bars ¼ standard

error of the mean. AD, atopic

dermatitis; CPM, counts per million;

LS, lesional skin; NL, nonlesional; n.s.,

no significance; RNA-Seq, RNA

Sequencing; VAS, visual analog scale.
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Supplementary Figure S2. Klk7 expression is restricted to the epidermis in

mouse skin. (a) Genomic construct of the Klk7tm1(KOMP)Vlcg allele. Exons 3-5

within the coding region of Klk7 are replaced with a LacZ-b-galactosidase

reporter. (b) X-gal staining (blue) of hair-bearing skin from a Klk7LacZ mouse,

in which LacZ expression is controlled under the Klk7 promoter. (cef) X-gal

staining of (c) DRG, (d) TG, (e) SC, (f) and brain. (g) RT-PCR screening of Klk7

expression in tissues from a WT control mouse. N ¼ 3 biological replicates for

panels (beg). Scale bars ¼ 200 mm. Cere., cerebrum; Cebel., cerebellum;

DRG, dorsal root ganglia; Epidid., epididymis; Esoph., esophagus; G skin,

glabrous skin; H skin, hairy skin; LacZ, ß-galactosidase; RT-PCR, reverse

transcriptaseePCR; SC, spinal cord; SI, Small intestine; TG, trigeminal

ganglia; WT, wild-type.
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Supplementary Figure S3. Klk7-/-

mice do not show lowered Th2 and

inflammatory markers after MC903

Treatment. (a, b) ELISA-based

quantification of serum (a) IgE and (b)

TARC levels in MC903-treated control

and Klk7-/- mice. (cee) RT-qPCR

quantification of c. Il4ra, (d) Il4, and

(e) Il13 expression in MC903-treated

skin of control and Klk7-/- mice. (f) RT-

qPCR quantification of Tslp

expression in vehicle or MC903-

treated skin of control and Klk7-/-

mice. Error bars ¼ standard error of

the mean. ***P < 0.001. MC903,

calcipotriol; n.s., no significance, RT-

qPCR, quantitative reverse

transcriptaseePCR; TARC, thymus and

activation-regulated chemokine.

Supplementary Figure S4. Klk7-/- mice have a selective reduction in itch in

MC903 ear model. (a) Scratching behavior recorded on day 12 of MC903

treatment of control (wild-type) and Klk7-/- mice. (b) Change in ear thickness

(normalized to pretreatment baseline) as measured by calipers daily during

topical MC903 treatment. Error bars ¼ standard error of the mean.

**P < 0.05. WT, wild-type.
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Supplementary Figure S5. rhKLK7 does not activate PAR2 receptors.

Representative calcium transients of KRNK cells stably transduced with PAR2

expression after treatment with rhKLK7 and trypsin.
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Supplementary Figure S6. Acute in vivo and in vitro effects of rhKLK7. (a, b).

Acute pain (wiping) and itch (scratching) behavioral responses of C57BL/6J

mice to vehicle or 1 mg rhKLK7 injections. (c) Quantification of calcium

responses of culture DRG neurons from PirtGCaMP3/þ mice to acute

application of vehicle or 20 ng/ml rhKLK7. Percent responsive represents

fraction of all DRG neurons in field. Data is presented as mean � standard

error of the mean. DRG, dorsal root ganglia; n.s, no significance.

Supplementary Table S1. Primers used for PCR

Gene Forward Primer Reverse Primer

HS KLK5 CACAAGGGTAATCTCCCCAG AGATGACACCATGTTCTGCG

HS KLK7 GGGTACCTCTGCACACCAAC GGATGTCAAGCTCATCTCCC

HS ACTB ACCTTCTACAATGAGCTGCG CCTGGATAGCAACGTACATGG

MM Klk5 GAACCACTTAGCCTCGACCTTTAT GTTCGGTTCCAGAGGGGTTG

MM Klk7 GTGCTGGCATTCCTGACTCTA CCATCACCCACCGTTTGTACT

MM Gapdh CCCAGCAAGGACACTGAGCAA TTATGGGGGTCTGGGATGGAAA

MM Il4ra GTTACAGGAACAAGACCAGCA TGGAGCCTGAACTCGCA

MM Il4 GAACGAGGTCACAGGAGAAG ACCTTGGAAGCCCTACAGA

MM Il13 TGCCATCTACAGGACCCAGA CTCATTAGAAGGGGCCGTGG

Supplementary Table S2. Primary Antibodies for Flow Cytometry

Antibody Vendor Catalog # Antibody Vendor Catalog #

CD49b APC Biolegend 17-5971-82 Siglec-F BV421 BD 562681

CD11b BV510 Biolegend 101245 CD117 BV605 Biolegend 135122

CD3ε PerCP/Cy5.5 eBioscience 45-0031-82 CD5 PerCP/Cy5.5 eBioscience 45-0051-82

CD11c PerCP/Cy5.5 eBioscience 45-0114-82 CD19 PerCP/Cy5.5 eBioscience 45-0193-82

NK1.1 PerCP/Cy5.5 eBioscience 45-5941-82 ST2-Biotin Biolegend 145307

KLRG1 PE/Dazzle Biolegend 138424 CD25 BV605 Biolegend 102035

FcεRIa FITC eBioscience 11-5898-85 IgE FITC eBioscience 11-5992-81

CD90.2 PE/Cy7 Biolegend 140309 CD45 APC Biolegend 103111

CD45.2 PE Biolegend 109808 CD3ε PE Biolegend 100307
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