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Abstract 

Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective ligand-gated cation 

channel responding to noxious heat, protons, and chemicals like capsaicin. TRPV1 is 

expressed in sensory neurons and plays a critical role in pain associated with tissue injury, 

inflammation or nerve lesions. Transient Receptor Potential Ankyrin 1 (TRPA1) is co-

expressed with TRPV1. It is activated by compounds that cause a burning sensation (e.g. 

mustard oil) and, indirectly, by components of the inflammatory milieu eliciting nociceptor 

excitation and pain hypersensitivity. Previous studies indicate an interaction of TRPV1 and 

TRPA1 signaling pathways. Here we sought to examine the molecular mechanisms 

underlying such interactions in nociceptive neurons. We first excluded physical interactions 

of both channels using radioligand binding studies. By microfluorimetry, electrophysiological 

experiments, cAMP measurements, and site-directed mutagenesis we found a sensitization of 

TRPV1 after TRPA1 stimulation with mustard oil in a calcium- and cAMP/PKA-dependent 

manner. TRPA1 stimulation enhanced TRPV1 phosphorylation via the putative PKA 

phosphorylation site serine 116. We also detected calcium-sensitive increased TRPV1 activity 

after TRPA1 activation in dorsal root ganglion (DRG) neurons. The inhibition of TRPA1 by 

HC-030031 after its initial stimulation and the calcium-insensitive TRPA1 mutant D477A 

still showed increased capsaicin-induced TRPV1 activity excluding an additive TRPA1 

current after TRPV1 stimulation. Our study shows sensitization of TRPV1 via activation of 

TRPA1, which involves adenylyl cyclase, increased cAMP, subsequent translocation and 

activation of PKA, and phosphorylation of TRPV1 at PKA phosphorylation residues. This 

suggests that cross-sensitization of TRP channels contributes to enhanced pain sensitivity in 

inflamed tissues.  
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Introduction 

The transduction and transmission of painful stimuli is initiated by activation of nociceptive 

dorsal root ganglion (DRG) neurons, which convey information to the central nervous system, 

resulting in the sensation of pain (Tominaga, 2007). The transient receptor potential (TRP) 

ion channel family plays essential roles in such responses (Venkatachalam and Montell, 

2007). Important and extensively investigated are TRP vanilloid 1 (TRPV1) and TRP ankyrin 

1 (TRPA1). Both are nonselective cation channels sharing the common feature of six 

transmembrane domains and intracellular N- and C-termini. One functional channel is formed 

by four monomers (Venkatachalam and Montell, 2007). Both channels play crucial roles in 

neurogenic inflammation (reviewed in (Geppetti et al., 2008)) and in the development of 

hyperalgesia (Bautista et al., 2006; Davis et al., 2000; Obata et al., 2005; Petrus et al., 2007; 

Spahn et al., 2013; Tominaga et al., 1998). Additionally, it was shown that 97 % of TRPA1-

positive sensory neurons also express TRPV1, and that 30 % of TRPV1-positive neurons co-

express TRPA1 (Story et al., 2003). Since previous studies indicated modulating effects of 

TRPA1 stimulation on TRPV1 activity (Akopian et al., 2008; Anand et al., 2008; Jeske et al., 

2006), we sought to investigate the underlying mechanisms at the molecular level. 

TRPV1 expressing DRG neurons respond to temperatures above 43°C, protons and chemical 

stimuli such as capsaicin (Caterina et al., 2000; Caterina et al., 1997). This channel features 

several putative phosphorylation sites that can be modulated by the cyclic adenosine 

monophosphate (cAMP)/protein kinase A pathway (reviewed in (Tominaga and Tominaga, 

2005)). Important sites are serine 6, serine 116, threonine 144, threonine 370, serine 502, 

serine 774 and serine 820 (Bhave et al., 2002; Mohapatra and Nau, 2003). 

TRPA1 is the sole vertebrate member of the TRPA family (Tai et al., 2008; Venkatachalam 

and Montell, 2007). Initially TRPA1 was proposed to be the sensor of noxious cold, albeit 

TRPA1 knock-out mice yielded controversial results (Bandell et al., 2004; Bautista et al., 

2006; Kwan et al., 2006; Story et al., 2003). This channel is also activated by the chemicals 
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allyl isothiocyanate (an ingredient of mustard, horseradish and wasabi), allicin, 

diallyldisulfide (in garlic), cinnamaldehyde (in cinnamon), and acrolein (in tear gas) through 

covalent modifications of cysteine residues. In vivo, the topical application of mustard oil 

(MO) to the skin produces pain, inflammation and hypersensitivity to thermal and mechanical 

stimulation (Jordt et al., 2004). Additionally, TRPA1 can be activated by cannabinoids and 

intracellular calcium, which modulates the channel via a partial EF-hand domain at the N-

terminal (Doerner et al., 2007; Jordt et al., 2004; Zurborg et al., 2007).  

Similar to the TRPV subfamily, TRPA1 features a tetrameric arrangement with a dense 

transmembrane region and a basket-like cytoplasmic domain structure. However, the 

intracellular termini differ from other TRP channels in that the N-terminus consists of 

numerous ankyrin repeats (Bessac and Jordt, 2008; Cvetkov et al., 2011; Premkumar and 

Abooj, 2012).  

In the current study we sought to investigate the molecular mechanisms underlying the effects 

of TRPA1 activation on TRPV1 since this interaction is of great interest for the development 

of novel pain therapies in the context of inflammation. To this end, we used microfluorimetry, 

electrophysiology, radioligand binding studies and site-directed mutagenesis. We 

hypothesized that MO-induced calcium influx through TRPA1 results in the activation of 

calcium sensitive adenylyl cyclases (ACs) which produce intracellular cAMP. The latter 

might stimulate PKA to phosphorylate and sensitize TRPV1. 
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Materials and Methods 

Cell culture 

Experiments were performed in HEK 293 Tet-On cells because they do not constitutively 

express TRPV1 or TRPA1. The HEK 293 Tet-On® Advanced cell line stably expresses a 

reverse tetracycline-controlled transactivator protein, providing the ability of high expression 

levels after addition of doxycycline to the culture medium. This way, the known cell toxicity 

due to constitutive expression of TRPA1 is prevented (Story et al., 2003).  

HEK 293 Tet-On cells were maintained in MEM alpha medium supplemended with 10 % Tet 

system approved FBS, 1 % penicillin/streptomycin, 4 mM L-glutamine and 200 μg/ ml 

geneticin (G418) at 37° C and 5 % CO2 in a cell incubator. They were passaged 1:3 - 1:10 

every second to third day depending on the confluence. 

DRG were prepared as described previously (Bolyard et al., 2000). Briefly, thoracic and 

lumbar DRG of male Wistar rats were removed and placed in sterile MEM at 4°C. DRG were 

digested with collagenase type 2 in MEM at 37°C for 50 min and 0.025% trypsin for 10 min 

at 37°C. After digestion, DRG were carefully dissociated by mechanical agitation, centrifuged 

at 500 g for 5 min and then at 300 g for 5 min. The cells were maintained in MEM (Biochrom 

AG, Berlin, Germany) growth media supplemented with 10% horse serum, 50 µg/ml 

penicillin and streptomycin, and plated in 35-mm polylysine coated culture dishes at 37°C in 

an atmosphere of 5% CO2 (Spahn et al., 2013).  

 

Site directed mutagenesis and heterologous expression 

Mutagenesis of several PKA phosphorylation sites of TRPV1 cDNA was realized with 

TRPV1-pcDNA3.1 using a site-directed mutagenesis kit (Stratagene, La Jolla, USA) as 

described previously (Mohapatra et al., 2003). All constructs were confirmed by DNA 

sequencing by a commercial provider (LCG Genomics, Berlin, Germany) (Spahn et al., 

2013). The TRPA1 mutant D477A was kindly provided by S. Zurborg and P. Heppenstall. 
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Heterologous expression of wild type (wt) or mutant plasmids of TRPV1 (Rattus norvegicus) 

(0.5 μg) and wild type or mutant TRPA1 (Homo sapiens) (0.5 μg) was achieved using Fugene 

6 or X-tremeGENE DNA transfection reagent (Roche Diagnostics, Indianapolis, IN 46250). 

Gene expression was induced after addition of 1μg/ml doxycycline and experiments were 

performed 24 h after transfection. Transfection-positive cells were identified by YFP tagged 

TRPV1 receptors. All cells responding to MO also responded to capsaicin, indicating co-

expression of TRPA1 and TRPV1. 

 

Treatments 

TRPV1 and TRPA1 co-expressing HEK 293 Tet-On cells or DRG neurons were preincubated 

with MO (20 μM) or cinnamaldehyde (CA; 100 µM) for 2 min followed by a 1 min washout 

with buffer (MO; CA in Fig. 1) unless otherwise noted. Thereafter, cells were stimulated with 

capsaicin.  Control cells were treated with the corresponding buffer for 3 min, followed by 

capsaicin (control group, Ctrl). To examine whether the capsaicin-induced current is a result 

of an additive TRPA1 current, cells were perfused with the TRPA1 inhibitor HC-030031 (25 

µM) (Sigma-Aldrich, Steinheim, Germany) for 1 min immediately after the MO-induced 

TRPA1 current. Thereafter, they were stimulated with capsaicin in the presence of HC-

030031. In these experiments control cells were pretreated with buffer for 2 min, afterwards 

with buffer containing HC-030031 (25 µM) for 1 min. 

To completely block TRPA1 activity a priori, HC-030031 was applied simultaneously with 

MO for 2 min followed by a 1 min wash out and capsaicin stimulation. Control cells were 

treated with buffer for 3 min followed by capsaicin application. 

To simulate calcium-free conditions in patch clamp experiments, cells were washed and 

incubated with Ca2+-free extracellular solution (ECS) complemented with EGTA (100 μM) 

(ECS Ca2+-free) before the recording of currents. To inhibit PKA, cells were incubated with 

H89 (Sigma-Aldrich, Steinheim, Germany) (10 μM) for at least 6 h prior to the experiment. 
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The activity of AC was inhibited by the addition of 100 µM SQ 22,536 (Sigma-Aldrich, 

Steinheim, Germany) for 10 min. 

 

Patch clamp recordings 

Whole-cell voltage clamp recordings were performed in HEK 293 Tet-On cells and 

dissociated small-sized DRG neurons at –60 mV holding potential with an EPC-10 patch 

clamp amplifier and PULSE software (HEKA Elektronik, Lambrecht, Germany). Borosilicate 

glass electrodes (Hilgenberg, Malsfeld, Germany), pulled on a horizontal puller (Sutter 

Instrument Company, Novato, USA), had resistances of 2-5 MΩ after filling with 140 mM 

KCl, 2 mM MgCl2, 10 mM HEPES and 5 mM EGTA, with the pH adjusted to 7.4 with KOH 

according to (Mohapatra and Nau, 2003; Mohapatra and Nau, 2005; Spahn et al., 2013). The 

ECS consisted of 140 mM NaCl, 5 mM KCl, 2 mM MgCl2, 10 mM glucose, 2 mM CaCl2 and 

10 mM HEPES at pH 7.4 adjusted by NaOH. In experiments using DRG neurons 10 µM 

forskolin and 2 mM isobutymethylxanthin were added to the solution. Recordings were 

performed at room temperature. Only small-sized sensory neurons (cell diameter ≤ 26µm) 

sensitive to capsaicin (1µM or 100 nM) and MO (20 µM) were included in the study. These 

cells were considered responsive if the inward current was at least 100 pA. Solutions were 

applied with a polytetrafluoroethylene glass multiple-barrel perfusion system. The PULSE 

software (HEKA Elektronik, Lambrecht, Germany) was used for data acquisition and offline 

analysis.  

 

Ratiometric [Ca2+]i measurements 

Transiently transfected cells were loaded with 3µM of the fluorescent calcium indicator dye 

Fura-2-AM supplied with 0.02% pluronic F-127 (Invitrogen, Carlsbad, USA) for 20 min. 

Afterwards, cells were washed with calcium imaging buffer (CIB) (140 mM NaCl, 2 mM 

CaCl2, 5 mM KCl, 10 mM glucose, 20 mM HEPES; adjusted to pH 7.4) to remove 
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extracellular Fura-2-AM. 20 µM MO was added to the culture plates with cover slips. After 2 

min the cover slips were transferred to the measurement chamber and cells were covered with 

CIB (wash out). 1 min later the recording started and capsaicin was added. Every 2 s images 

were acquired using a CCD camera with a monochromator (Till Photonics) coupled to an 

Eclipse TE 2000-s microscope (Nikon, Düsseldorf, Germany). Fura-2-AM was excited at 340 

nm and 380 nm with 100 ms exposure time at 2 Hz. Fluorescence at more than 420 nm was 

collected. Background for both wavelength intensities was continuously recorded and 

subtracted. Results were reported as a ratio. Cells were continuously superfused with CIB. 

Experiments were performed at room temperature and data were stored for offline analysis as 

described (Spahn et al., 2013).  

 

TRPV1 expression 

Binding of the labeled TRPV1 agonist [3H] resiniferatoxin (RTX) was examined according to 

Szallasi et. al. (Szallasi et al., 1999). Briefly, appropriate concentrations of membranes from 

cells transfected with TRPV1 and TRPA1, or with TRPV1 and the empty vector Ptre2 (100 

µg) were prepared and incubated in assay buffer (50 mM Trizma, 0.25 mg/ml bovine serum 

albumin, pH 7.4) containing increasing concentrations of [3H] RTX (100-2400 pM) (39.2 

Ci/mmol) (Perkin Elmer, Waltham, USA) in the absence or presence of 10 µM unlabeled 

RTX to assess affinity by displacement. 

 

cAMP accumulation 

The cAMP levels of transiently transfected HEK 293 Tet-On cells were measured using 

enzyme linked immunosorbant assays (GE Healthcare) according to the manufacturer’s 

instructions. Cells were pretreated for 20 min with the phosphodiesterase inhibitor 

isobuthylmethylxanthine (2mM)  and 10 µM forskolin to avoid cAMP degradation and induce 

AC activity, respectively (Xia et al., 2011). TRPA1 was activated by 20 µM MO 5 min 
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previous to the membrane preparation. Calcium was removed in the respective cells by the 

addition of 100 µM EGTA and 10 µM BAPTA-AM 12 h prior to the experiment. 

 

Statistics 

Data are represented as means ± S.E.M. Gaussian distribution was examined by the Shapiro-

Wilk normality test. We used the unpaired t-test and 1-way ANOVA with Dunnett’s multiple 

comparison test for parametric data, and the Mann-Whitney test and Kruskal-Wallis with 

Dunn’s multiple comparison test for non-parametric data. For grouped analyses we used 2-

way ANOVA with Bonferroni’s multiple comparison test. Binding data are reported as means 

± S.E.M. of at least four independent experiments performed in duplicate. Differences were 

considered significant if p<0.05. All tests were performed using Prism 5 (GraphPad, San 

Diego, USA) statistical software (Spahn et al., 2013). 
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Results 

Increased TRPV1 activity after TRPA1 stimulation 

We first measured capsaicin (1µM)-induced TRPV1 currents in transiently transfected HEK 

293 Tet-On cells co-expressing wild type (wt) TRPV1 and TRPA1. Pretreatment with 20 µM 

MO for 2 min followed by 1 min washout resulted in 3.3 fold increase of capsaicin-induced 

TRPV1 currents compared to control cells without MO pretreatment (Kruskal-Wallis test, 

p<0.01). In the absence of TRPA1 or after inhibition by simultaneous application of the 

TRPA1-specific inhibitor HC-030031 (25 µM) this effect was not detected (Fig. 1A and Fig. 

2C and D).  

Representative current traces of control and MO-pretreated cells are shown in Fig. 1B. 

Calcium imaging confirmed these data in that the capsaicin (100 nM)-induced change of the 

fura ratio over time, as well as the maximum change of the fura ratio of MO-pretreated cells 

was significantly higher compared to control cells (Fig. 2A; 2-way ANOVA, p<0.001; Fig. 

2B Mann-Whitney test, p<0.05). In cells only expressing TRPV1 (Fig 2E; n=53) or TRPA1 

(Fig 2F; n=16), 20 µM MO or 1µM capsaicin, respectively, had no effect. 

To further exclude a direct effect of MO at TRPV1, we investigated another TRPA1 agonist, 

CA (100 µM). Pretreatment of TRPV1 and TRPA1 co-expressing HEK 293 cells with CA for 

2 min followed by a 1 min washout also resulted in a significantly increased capsaicin (100 

nM)-induced TRPV1 current (Fig. 1E; Mann-Whitney test; p<0.01). Representative current 

traces are shown in Fig 1F. 

To study sensory neurons natively expressing TRPV1 and TRPA1, we performed whole cell 

patch clamp experiments in small to medium-sized DRG neurons. Again, MO pretreatment 

resulted in a significantly elevated capsaicin (100 nM)-induced TRPV1 current (Fig. 1C; 

Mann-Whitney test, p<0.05). Representative current traces of control and MO-pretreated cells 

are shown in Fig. 1D. 69.2% of capsaicin-responsive neurons also responded to MO with an 
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average MO (20 µM)-induced current of -0.44 ± 0.1 nA, indicating TRPA1 expression. Only 

neurons responding to MO were analyzed. 

To exclude that the increased capsaicin-induced current is based on an additive TRPA1 

current, TRPA1 was inhibited with HC-030031 (25 µM) immediately after MO (or vehicle) 

pretreatment. Capsaicin was applied in the presence of HC-030031. This treatment still 

resulted in significantly increased capsaicin-induced TRPV1 currents in HEK 293 Tet-On 

cells (Figs. 3A, B; Mann-Whitney test, p<0.05). In DRG neurons this effect was similar but 

not statistically significant (not shown; Mann-Whitney test, p>0.05). We further studied HEK 

293 Tet-On cells co-expressing wt TRPV1 and D477A TRPA1. This mutant lacks calcium 

sensitivity (Zurborg et al., 2007) and therefore, increased intracellular calcium (due e.g. to 

TRPV1 activation) cannot activate TRPA1 and account for the increased current. These 

experiments also showed significantly increased capsaicin-induced currents in the MO-

pretreated group (Fig. 3C, Mann-Whitney test, p<0.001). 

 

Unaltered TRPV1 expression in the presence of TRPA1 

Next, we examined whether TRPV1 and TRPA1 co-transfection may alter the TRPV1 

expression level or [3H] RTX binding affinity. The co-transfection of TRPV1 and TRPA1 did 

not influence total [3H] RTX binding compared to cells transfected with TRPV1 alone (2-way 

ANOVA with Bonferroni post test, p>0.05) (Fig. 4A). The maximum number of [3H] RTX 

binding sites on cells expressing only TRPV1 was 427.2 ± 244.1 fmol/mg compared to 445.6 

± 236.1 fmol/mg on TRPV1/TRPA1 co-expressing cells. The dissociation constants were 6.9 

± 4.8 nM and 4.7 ± 3.4 nM, respectively, indicating similar binding affinities. Binding 

experiments with 0.4 nM [3H] RTX in TRPV1/TRPA1 co-expressing cells revealed that MO 

pretreatment for 1 h did not change the number TRPV1 binding sites (Mann-Whitney test, 

p>0.05) (Fig. 4B).  
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Increased TRPV1 activity after TRPA1 stimulation is dependent on calcium, AC and PKA  

In transfected HEK cells the removal of extracellular calcium per se induced significantly 

increased TRPV1 currents under control conditions (with calcium: I = - 0.73 ± 0.1 nA, 

without calcium: I = -2.72 ± 0.35 nA, unpaired t-test, p<0.001) and reversed the TRPV1 

sensitization after TRPA1 stimulation with MO (Fig. 5A; unpaired t-test, p>0.05).  

The unspecific AC inhibitor SQ 22.536 (100µM) abolished the increased capsaicin-induced 

TRPV1 current after TRPA1 stimulation (Fig. 5B; control: I = -1.42 ± 0.31 nA; MO: I = - 2.0 

± 0.54 nA; unpaired t-test, p>0.05). Enzyme-linked immunosorbant assays showed 

significantly elevated cAMP levels in TRPV1/TRPA1 expressing cells pretreated with MO 

compared to controls (1-way ANOVA, Bonferroni posthoc test, p<0.05). This was not 

detectable in the absence of calcium or in the absence of TRPA1 (Fig. 5C). In patch clamp 

experiments the PKA inhibitor H89 (10µM) prevented TRPV1 sensitization after TRPA1 

stimulation (Fig. 5D; control: I = -1.34 ± 0.2 nA; MO: I = -2.06 ± 0.55 nA; Mann-Whitney 

test, p>0.05). 

In DRG neurons the removal of extracellular calcium as well as the inhibition of PKA 

prevented TRPV1 sensitization after TRPA1 stimulation, i.e. capsaicin currents did not differ 

significantly between control and MO-pretreated cells (Figs. 5E, F; calcium free controls: I = 

- 1.12 ± 0.27 nA; MO: I = - 0.58 ± 0.07 nA, unpaired t-test, p>0.05; H89 controls: I = - 0.39 ± 

0.15 nA; MO: I = - 0.25 ± 0.1 nA; Mann-Whitney test, p>0.05). 

 

Increased TRPV1 activity after TRPA1 stimulation is absent in TRPV1 mutant S 116A 

We investigated PKA phosphorylation sites of TRPV1 by replacing serine 116 (S116), 

threonine 144 (T144), and serine 774 (S774) by alanine, respectively. In HEK 293 Tet-On 

cells co-expressing mutant TRPV1 and wt TRPA1 the increased capsaicin-induced TRPV1 

current after TRPA1 stimulation was absent in mutants S116A and S774A (Figs. 6A and C; 

unpaired t-test, p>0.05) but was still present in cells co-expressing T144A and wt TRPA1 
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(Fig. 6B, unpaired t-test, p<0.001). In microfluorimetry experiments the increased capsaicin-

induced calcium mobilization after MO pretreatment was reversed in mutant S116A (Mann-

Whitney test, p>0.05, Fig. 7A) but was still present in mutant T144A (unpaired- t-test, 

p<0.001; Fig. 7B) and in mutant S774A (unpaired t-test, p<0.01; Fig. 7C). 
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Discussion 

In the present study we showed increased TRPV1 activity after pre-stimulation of TRPA1 

both in HEK cells and DRG neurons. This was dependent on calcium, AC and PKA. Mutation 

of the putative phosphorylation site serine 116 in TRPV1 also abolished increased TRPV1 

activity after TRPA1 stimulation. Together, our findings suggest that TRPA1 activation 

causes an influx of calcium, increases calcium-sensitive AC activity, cAMP accumulation and 

subsequent PKA activation. This results in phosphorylation and sensitization of TRPV1.  

Although some studies showed direct activation of TRPV1 by MO at high concentrations 

(Everaerts et al., 2011; Gees et al., 2013; Ohta et al., 2007), our control experiments and other 

studies showed that MO at a concentration of 20 µM did not directly activate TRPV1 (Fig. 2D 

and (Everaerts et al., 2011; Jordt et al., 2004)). 

Approximately 30-50 % of TRPV1 expressing small to medium-sized peripheral sensory 

neurons co-express TRPA1 and almost all TRPA1 positive neurons co-express TRPV1 

(Hjerling-Leffler et al., 2007; Kobayashi et al., 2005; Linte et al., 2007; Story et al., 2003). 

Furthermore, currents induced by the TRPA1 agonists MO and WIN55,212 were almost 

exclusively detected in TRPV1 positive cells (Diogenes et al., 2007; Jordt et al., 2004; Story 

et al., 2003) and both channels are activated by compounds which cause a pungent burning 

sensation. Thus, we hypothesized that TRPV1 sensitization can result from functional 

interactions of both channels. 

While most TRP channel complexes are made up of monomers from members of the same 

subfamily, numerous studies identified physical interactions between members of different 

TRP channel subfamilies through formation of heteromultimeric complexes (Bai et al., 2008; 

Dietrich et al., 2005; Hellwig et al., 2005; Park et al., 2008; Schilling and Goel, 2004). 

Although it was shown that TRPV1 and TRPA1 can form such complexes resulting in 

different pharmacological properties of the individual channels (Ruparel et al., 2011; Salas et 

al., 2009; Staruschenko et al., 2010), we did not find any alterations in the amount of TRPV1 
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protein expression or binding in the presence of TRPA1 with the methods used in the current 

study. Previously, a stabilizing effect of TRPV1 on the membrane expression of TRPA1 was 

suggested (Akopian et al., 2007). Internalization of membrane-bound channels can be 

suppressed by interactions with other proteins including subunits of the channels (Bernstein 

and Jones, 2007), and functional TRPV1 tetramers can be modulated by cAMP-dependent 

translocation of TRPV1 monomers from intracellular pools to the cell membrane (Vetter et 

al., 2008). Again, since neither the affinity nor the number of TRPV1 binding sites changed 

during TRPA1 activation, our experiments indicate that TRPV1 was not internalized or 

recruited to the cell membrane from intracellular pools.  

Functional interactions between TRPV1 and TRPA1 via signaling pathways were suggested 

before, however with some inconsistent results. One group showed inhibition of TRPV1 

activity by TRPA1 via calcineurin-mediated desensitization of TRPV1 in CHO cells and 

trigeminal ganglion neurons (Akopian et al., 2007; Jeske et al., 2006). In these studies TRPA1 

activation resulted in a recruitment of the calcium-dependent calcineurin pathway, whereby 

calcineurin dephosphorylated threonine 144 and 370 and subsequently desensitized TRPV1. 

In line with our results, CAMKII and PKC activation can increase TRPV1 activity after 

TRPA1 stimulation in a calcium dependent manner (Jung et al., 2004; Mandadi et al., 2004). 

Phosphorylation and dephosphorylation events might be dependent on calcium, TRPA1 

agonist concentration or incubation time. 

Additionally, activation of calcium sensitive ACs with subsequent PKA activation can induce 

TRP channel phosphorylation (Distler et al., 2003; Ferguson and Storm, 2004; Wang et al., 

2008). A recent study measured enhanced capsaicin responses of DRG neurons pre-incubated 

with low concentrations of CA (225 µM) in calcium imaging experiments, which indicated 

enhanced TRPV1 activity after pretreatment with a TRPA1 agonist (Anand et al., 2008). 

Another group showed that the TRPV1 response to mild acidification was significantly 
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enhanced in the presence of 100 µM MO (Gees et al., 2013). These findings are in line with 

our results showing that pretreatment with MO increased TRPV1 activity. 

The activation of TRPA1 leads to an increase of intracellular calcium since TRPA1 is a non-

selective cation channel. Previous studies showed that calcium directly activates TRPA1 

through an intracellular EF-hand domain (Zurborg et al., 2007), possibly resulting in an (auto-

) amplification of TRPA1 activity. This might induce an additive TRPA1 current due to 

calcium entering TRPV1 after capsaicin application. We excluded this possibility using the 

TRPA1 inhibitor HC-030031 or the calcium-insensitive TRPA1 mutant D447A. Therefore, 

we conclude that the increased TRPV1 activity after TRPA1 stimulation is only carried by 

TRPV1. In the present study TRPA1 activation failed to sensitize TRPV1 in the absence of 

calcium, suggesting an important role for calcium in mediating TRPV1 sensitization. In 

sensory neurons an increase of intracellular calcium can lead to elevated cAMP, elevated 

translocation of the catalytic PKA subunit via AC 1 and AC 8, and subsequently to increased 

TRPV1 phosphorylation (Distler et al., 2003). In line with these findings, we measured 

increased cAMP levels after MO pre-stimulation, which were abolished in the absence of 

calcium or of TRPA1. Importantly, in native DRG neurons we also found a significant 

increase of capsaicin-induced TRPV1 activity after TRPA1 activation. This supports our 

results in transfected cells, suggesting that this mechanism also plays an important role in 

cells endogenously expressing TRPV1 and TRPA1.  

Finally, we used TRPV1 mutants S116A, T144A and S774A to identify potential PKA 

phosphorylation sites at TRPV1. TRPV1 sensitization after TRPA1 stimulation was absent in 

mutant S116A, however not in T144A or S774A. This supports our hypothesis that TRPA1 

pre-stimulation increases PKA activity and subsequently increases TRPV1 sensitivity at 

S116. This is in accordance with previous studies that identified S116 as a candidate PKA 

phosphorylation site for PKA-dependent TRPV1 sensitization (Bhave et al., 2002; Mohapatra 

and Nau, 2005). 
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In summary, our data show that TRPA1 activation sensitizes TRPV1 in a calcium- and 

cAMP/PKA-dependent manner. The activation of TRPA1 resulted in an enhanced cAMP-

accumulation, likely by the stimulation of calcium-dependent ACs. The increased cAMP may 

stimulate the release of the catalytic PKA subunit which in turn phosphorylates TRPV1 at the 

putative phosphorylation site serine 116. Concurrently, we detected calcium-sensitive 

increased TRPV1 activity after TRPA1 activation in DRG neurons. Future studies might 

identify new analgesics based on the prevention of TRPV1 sensitization.  
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Figure legends: 

 

Figure 1: Sensitization of TRPV1 after TRPA1 activation. A) Preincubation with the TRPA1 

agonist mustard oil (MO) significantly increased capsaicin (Caps)-induced TRPV1 currents in 

HEK 293 Tet-On cells co-transfected with TRPV1/TRPA1, but not with TRPV1/Ptre2 (empty 

control vector) (Kruskal-Wallis test, **, p<0.01). B) Representative current traces of 

TRPV1/TRPA1 co-expressing HEK 293 Tet-On cells without (lower trace, Ctrl) and with 

MO pretreatment (upper trace). For the MO pretreated cell, the MO-induced TRPA1 current 

is also shown followed by washout and Caps-induced TRPV1 current. C) Capsaicin-induced 

TRPV1 currents of DRG neurons with (MO, black bar) and without (Ctrl, white bar) MO 

pretreatment differed significantly (Mann-Whitney test, *, p<0.05). D) Representative 

capsaicin-induced current traces of neurons without (Ctrl, left) and with MO pretreatment 

(right). E) Preincubation with the TRPA1 agonist cinnamaldehyde (CA) (100 µM) 

significantly increased capsaicin-induced TRPV1 currents in HEK 293 Tet-On cells co-

transfected with TRPV1/TRPA1 (Mann-Whitney test, **, p<0.01). F) Representative current 

traces of TRPV1/TRPA1 co-expressing HEK 293 Tet-On cells without (lower trace, Ctrl) and 

with CA-pretreatment (upper trace). For the CA-pretreated cell, the CA-induced TRPA1 

current is also shown followed by washout and capsaicin-induced TRPV1 current. Numbers 

(n) of cells are given in brackets. 

 

Figure 2: Sensitization of TRPV1 is dependent on TRPA1. A) Capsaicin-induced calcium 

influx in TRPV1/TRPA1 co-expressing HEK 293 Tet-On cells without (Ctrl, open circle) and 

with MO pretreatment (solid squares) differed significantly (2-way ANOVA, ***, p<0.001; 

Ctrl: n=73; MO: n=36, 7 independent experiments). B) Maximum change of fura ratio in MO-

pretreated cells (black bar) was significantly increased compared to Ctrl cells (white bar) 

(Mann-Whitney test, **, p<0.05). C) Co-application of MO and the TRPA1 inhibitor HC-
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030031 reversed capsaicin-induced TRPV1 sensitization in calcium imaging experiments (2-

way ANOVA, ***, p<0.001; Ctrl: n=67; MO/HC-030031: n=77; 8 independent experiments). 

D) Simultaneous application of MO with the TRPA1 inhibitor HC-030031 reversed 

capsaicin-induced TRPV1 sensitization in patch clamp experiments (Mann-Whitney test, n.s., 

p>0.05). Numbers (n) of cells are given in brackets. E) HEK 293 Tet-On cells only expressing 

TRPV1 did not respond to MO (indicated by arrow), but to capsaicin (indicated by arrow) 

(n=53, 4 independent experiments). F) HEK 293 Tet-On cells only expressing TRPA1 

strongly respond to MO (n=16, 2 independent experiments). 

 

Figure 3: An additional TRPA1 current is not involved in the increased capsaicin-induced 

currents. Capsaicin-induced TRPV1 currents were significantly higher in the MO group 

(black bar) compared to the Ctrl group (white bar) (Mann-Whitney test, *, p<0.05), both if 

TRPA1 was blocked by HC-030031 after the initial MO activation (A) and in cells co-

transfected with wt TRPV1 and the TRPA1 mutant D447A (Mann-Whitney, ***, p<0.001) 

(C). B) Representative capsaicin-induced current traces of a Ctrl and MO-pretreated cell in 

the presence of HC-030031. Numbers (n) of cells are given in brackets.   

  

Figure 4: [3H] RTX-binding in transfected HEK 293 Tet-On cells. A) [3H] RTX binding was 

not different between cells co-transfected with TRPV1 and TRPA1 (n=7) and those 

transfected with TRPV1 alone (n=4) (2-way ANOVA Bonferroni post test, p>0.05). B) 

Binding of 0.4 nM [3H] RTX did not differ between TRPV1/TRPA1 co-transfected cells with 

(MO, black bar) and without (Ctrl, white bar) MO pre-treatment (Mann-Whitney test, 

p>0.05). Numbers of independent experiments are given in brackets. 

 

Figure 5: Involvement of calcium, AC and PKA in TRPA1-mediated TRPV1 sensitization. 

Capsaicin-induced TRPV1 currents (in % of Ctrl) in TRPV1/TRPA1 co-transfected HEK 293 
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Tet-On cells with (black bar) and without (white bar) MO pretreatment were not significantly 

different following removal of extracellular calcium (A; unpaired t-test, p>0.05), inhibition of 

AC by SQ 22.536 (B; unpaired t-test, p>0.05) or inhibition of PKA by H89 (D; Mann-

Whitney test, p>0.05). C) cAMP-accumulation in HEK 293 Tet-On cells co-transfected with 

TRPV1/TRPA1 (left three bars) without (Ctrl, white bar) and with MO pre-treatment (black 

bar), in the absence of calcium (third bar) or of TRPA1 (fourth bar) (Kruskal-Wallis test with 

Dunn’s multiple comparison test, *, p<0.05). Capsaicin-induced TRPV1 currents (in % of 

Ctrl) in DRG neurons with (black bar) and without (white bar) MO pretreatment were not 

significantly different in the absence of calcium (E; unpaired t-test, p>0.05) or in the presence 

of PKA inhibitor H89 (F; Mann-Whitney test, p>0.05). Numbers of cells and independent 

experiments are given in brackets. 

 

Figure 6: Cells co-expressing mutant TRPV1 and wild type TRPA1 in patch clamp 

experiments. Capsaicin-induced TRPV1 currents of mutants S116A (A) and S774A (C) did not 

differ between Ctrl and MO-pretreated cells (unpaired t-test, p>0.05) but were still increased 

in mutant T144A (B) after MO pretreatment (unpaired t-test, ***,  p<0.001). Numbers of cells 

are given in brackets. 

 

Figure 7: Cells co-expressing mutant TRPV1 and wild type TRPA1 in calcium imaging 

experiments. A) Maximum capsaicin-induced fura ratios were not different after MO pre-

treatment in TRPV1 mutant S116A (Ctrl: n=28; MO: n=24; Mann-Whitney test, p>0.05) but 

were significantly increased in mutants T144A (B; Ctrl: n=120; MO: n=70; unpaired t-test, 

***, p<0.001) and S774A (C; Ctrl: n=71; MO: n=54; unpaired t-test; **, p<0.01). 
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