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 49 

ABSTRACT 50 

Animal studies have suggested that transient receptor potential (TRP) ion channels and G 51 

protein-coupled receptors (GPCRs) play important roles in itch transmission. TRPV3 gain-of-52 

function mutations have been identified in patients with Olmsted syndrome which is associated 53 

with severe pruritus. However, the mechanisms causing itch remain poorly understood. Here, we 54 

show that keratinocytes lacking TRPV3 impair the function of protease activated receptor 2 55 

(PAR2), resulting in reduced neuronal activation and scratching behavior in response to PAR2 56 

agonists. Moreover, we show that TRPV3 and PAR2 were upregulated in skin biopsies from 57 

patients and mice with atopic dermatitis (AD), whereas their inhibition attenuated scratching and 58 

inflammatory responses in mouse AD models. Taken together, these results reveal a previously 59 

unrecognized link between TRPV3 and PAR2 in keratinocytes to convey itch information and 60 

suggest that a blockade of PAR2 or TRPV3 individually or both may serve as a potential 61 

approach for antipruritic therapy in AD. 62 

 63 

Key Words: TRPV3, PAR2, itch, keratinocytes, calcium, atopic dermatitis 64 
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INTRODUCTION 66 
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Atopic dermatitis (AD) is a common inflammatory skin disease with chronic, intractable and 67 

severe itch (Hong et al., 2011, Mack and Kim, 2018). It constitutes a major unmet problem that 68 

adversely impacts the quality of life of patients because of lack of effective treatments. Defects 69 

in the skin barrier are known to underlie the pathogenesis of AD (Fallon et al., 2009). AD is 70 

mediated by type 2 immune response that involves an enrichment of basophils, groups 2 innate 71 

lymphoid cells (ILC2s), T helper 2 (Th2) cells in response to thymic stromal lymphopoietin 72 

(TSLP)(Kim et al., 2013, Kim et al., 2014, Liu, 2006, Roediger et al., 2013), resulting in elevated 73 

production of cytokines, IL-4, IL-13 and IL-31 (Brandt and Sivaprasad, 2011, Brunner et al., 74 

2017). Despite these studies, the molecular mechanisms linking epithelial dysfunction to itch in 75 

AD are poorly understood (Mollanazar et al., 2016, Voisin and Chiu, 2018). Transient receptor 76 

potential (TRP) cation channels and G-protein coupled receptors (GPCRs) play essential roles in 77 

inflammatory skin diseases and itch transmission (Bautista et al., 2014, Dong and Dong, 2018, 78 

Geppetti et al., 2015, Gouin et al., 2018, Gouin et al., 2015, Mollanazar et al., 2016). While there 79 

is increased recognition that skin keratinocytes could function as the first sensor for itch 80 

signaling (Mack and Kim, 2018, Mollanazar et al., 2016, Nilius and Szallasi, 2014, Veldhuis et 81 

al., 2015), the contribution of GPCR-TRP signaling pathway to itch transmission remains poorly 82 

defined.  83 

 84 

TRPV3 is a warm temperature-sensitive Ca2+-permeable cation channel abundantly expressed in 85 

skin keratinocytes (Moqrich et al., 2005, Peier et al., 2002, Xu et al., 2002). TRPV3 can also be 86 

directly activated by several natural compounds derived from plants (e.g. carvacrol and camphor) 87 

(Nilius and Szallasi, 2014). Importantly, we previously identified gain-of-function mutations in 88 

TRPV3 from Olmsted syndrome patients, clinically characterized by diffuse palmoplantar 89 
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keratoderma, alopecia, and severe pruritus (Lin et al., 2012). Activation of TRPV3 in human 90 

keratinocytes is well known to regulate inflammatory responses (Szollosi et al., 2018). In mice, a 91 

Gly573Ser substitution in TRPV3 in keratinocytes resulted in an AD-like phenotype, including 92 

severe pruritus(Asakawa et al., 2006, Yoshioka et al., 2006, Yoshioka et al., 2009). To date, 93 

TRPV3 remains the only TRP channel whose mutation was directly implicated in pruritus in a 94 

human skin disease. How TRPV3 may mediate itch in the context of inflammatory skin diseases 95 

in the absence of spontaneous mutation remains unclear. One possibility is that TRPV3 may be 96 

activated by upstream GPCR signaling such as Protease-activated receptor 2 (PAR2) (Park et al., 97 

2017, Veldhuis et al., 2015, Xu et al., 2006).  98 

 99 

PAR2, a GPCR that belongs to the protease-activated receptor family, can be cleaved and 100 

activated by proinflammatory factors such as proteolytic enzymes, tryptase and trypsin during 101 

skin inflammation (Dery et al., 1998, Ossovskaya and Bunnett, 2004). PAR2 is also highly 102 

expressed in keratinocytes and has been implicated in AD pruritus (Briot et al., 2009, Kempkes 103 

et al., 2014, Steinhoff et al., 1999, Steinhoff et al., 2003). Activation of PAR2 leads to the 104 

production of cytokines and chemokines like TSLP that are involved in immune responses and 105 

sustained epidermal barrier disruption (Kempkes et al., 2014, Wilson et al., 2013). We 106 

hypothesize that PAR2 may couple to TRPV3 to integrate itch signaling in keratinocytes.   107 

 108 

Here we used pharmacological, genetic, mouse behavioral assay, single-cell Ca2+ imaging, and a 109 

mouse model of AD to explore the causal relationship between TRPV3 and PAR2 in 110 

keratinocytes. Our results suggest that the PAR2-TRPV3 interactions mediate acute and AD-111 

associated pruritus. 112 



 

6 
 

 113 

RESULTS 114 

TRPV3 mediated PAR2-dependent itch 115 

To examine whether TRPV3 is involved in acute itch transmission, we first compared the 116 

number of scratches in Trpv3-/- mice and their WT littermates after intradermal injection of a 117 

series of pruritogens (Figure 1a). Compared to WT mice, Trpv3-/- mice exhibited fewer scratches 118 

in response to SLIGRL, a PAR2 agonist, but not to histamine, indicating that TRPV3 mediates 119 

non-histaminergic itch responses. Since SLIGRL also activates MrgprC11 in DRG (Liu et al., 120 

2011), an intradermal injection of 2fly (a PAR2 selective agonist) (McGuire et al., 2004), trypsin 121 

(an endogenous PAR2 agonist) and BAM 8-22 (a MrgprC11 agonist) were also tested. Trpv3-/- 122 

mice displayed fewer scratches in response to 2fly and trypsin but not to BAM8-22 (Figure 1a). 123 

These data strongly suggest that TRPV3 is involved in PAR2-mediated scratching response. We 124 

also pre-treated WT mice with intradermal injections of vehicle (8% DMSO), FSLLRY (a 125 

specific PAR2 antagonist) and 74a (a specific TRPV3 antagonist) (Gomtsyan et al., 2016) 126 

(Shimada et al., 2006) to confirm the effects of PAR2 and TRPV3 on scratching behavior. As 127 

expected, the number of scratches induced by SLIGRL, trypsin and 2fly decreased significantly 128 

when TRPV3 and PAR2 were pharmacologically blocked (Figure 1b). 129 

 130 

We next examined the co-expression of PAR2 and TRPV3 in mouse keratinocytes. 131 

Immunohistochemical (IHC) staining using antibodies against TRPV3 and PAR2 showed that 132 

87.5% (49/56) of mouse keratinocytes expressed TRPV3 and 51% (25/49) of these cells 133 

expressed PAR2. Among PAR2 positive keratinocytes, 78.1% (25/32) of the cells expressed 134 
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TRPV3 (Figure 1d and 1e). The specificity of the antibodies was verified using Par2-/- and 135 

Tprv3-/- tissues (Figure 1c and Supplemental Figure S1).  136 

 137 

TRPV3 is required for PAR2 signaling in keratinocytes 138 

To examine the functional interactions between PAR2 and TRPV3, keratinocytes from Trpv3-/- 139 

and WT mice were treated with SLIGRL and histamine, and intracellular Ca2+ transients were 140 

quantified by calcium imaging. The proportion of SLIGRL-responsive cells was significantly 141 

reduced in Trpv3-/- keratinocytes but no significant change was observed in histamine-responsive 142 

keratinocytes (Figure 2a). Meanwhile, SLIGRL elicited stronger cytosolic Ca2+ responses in WT 143 

keratinocytes than in Trpv3-/- keratinocytes and no obvious responses in Par2-/- keratinocytes 144 

(Figure 2b). Together, these results indicate that TRPV3 is involved in PAR2-induced Ca2+ 145 

signaling in keratinocytes. 146 

 147 

Furthermore, pre-incubation of FSLLRY, a PAR2 antagonist, completely abrogated SLIGRL-148 

induced Ca2+ responses (Figure 2c, 2d, and 2g), while pre-incubation of 74a, the TRPV3 149 

antagonist, largely attenuated SLIGRL or SLIGKV-induced Ca2+ responses in mouse and human 150 

keratinocytes, respectively (Figure 2e, 2f，and 2g). These findings indicate that PAR2 is 151 

indispensable for SLIGRL- induced intracellular Ca2+ transients and TRPV3 is necessary to 152 

achieve adequate Ca2+ responses during PAR2 activation by SLIGRL in keratinocytes. 153 

 154 

PAR2 activation induced Ca2+ mobilization via phospholipase C (PLC) and TSLP release 155 

from keratinocytes 156 

We next used a series of inhibitors to examine SLIGRL-induced signaling process in 157 
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keratinocytes. The Gβγ signaling inhibitor gallein and PLC inhibitor U73122 almost completely 158 

abolished the intracellular Ca2+ response evoked by SLIGRL (Figure 3a, 3b, and 3d), consistent 159 

with a previous study (Macfarlane et al., 2005). However, after the application of endoplasmic 160 

reticulum ATPase inhibitor DBHQ, keratinocytes still showed slight Ca2+ responses (Figure 3c, 161 

and 3d), suggesting that SLIGRL activates PAR2 to elicit intracellular Ca2+ responses through 162 

not only IP3 mediated Ca+2 stores but also additional pathways probably via TRPV3. 163 

 164 

PAR2 activation triggers robust TSLP release in keratinocytes (Siracusa et al., 2011), which 165 

activates sensory neurons to transmit itch and stimulates immune cells to promote TH2 cell 166 

differentiation and inflammation (Wilson et al., 2013). If PAR2 functions upstream of TRPV3 in 167 

a signaling cascade, we predicted that TSLP release would be similarly affected without either 168 

PAR2 or TRPV3 in keratinocytes. Indeed, TSLP released from Trpv3-/- and Par2-/- keratinocytes 169 

after SLIGRL stimulation was significantly less than WT (Figure 3e). 170 

 171 

PAR2 signaling is independent of TRPV4 in keratinocytes and TRPV3 in DRG 172 

PAR2 can sensitize TRPV4 to mediate inflammatory pain in DRGs (Grant et al., 2007, Zhao et 173 

al., 2014), the latter of which has also been implicated in itch signaling (Akiyama et al., 2016, 174 

Kim et al., 2016, Luo et al., 2018). TRPV4 in keratinocytes also mediates histaminergic itch 175 

(Chen et al., 2016). To examine whether PAR2 may also activate TRPV4 in itch signaling, we 176 

compared scratching behavior of Trpv4-/- mice and their WT littermates after intradermal 177 

injection of SLIGRL and found no significant difference between the two groups (Supplementary 178 

Figure S2a). Moreover, Trpv4-/- and WT keratinocytes showed comparable Ca2+ responses to 179 
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SLIGRL stimulation (Supplementary Figure S2c-S2e). Together, we conclude that TRPV4 is not 180 

involved in PAR2-induced itch, consistent with a previous study (Akiyama et al., 2016). 181 

 182 

Next, we examined whether TRPV3, which is also expressed in DRG (Smith et al., 2002, Xu et 183 

al., 2002), may function downstream of PAR2 in DRGs. We found that TRPV3 expression levels 184 

in DRG were much lower than that in the skin (Figure 1c). Furthermore, Ca2+ responses to 185 

SLIGRL and histamine in DRG were similar between Trpv3-/- and WT mice (Supplementary 186 

Figure S2b). These data suggest that PAR2 signaling is likely independent of TRPV3 in the 187 

DRG. 188 

 189 

PAR2/TRPV3 signaling cascade plays a critical role in AD pruritus  190 

Next, we examined the expression of PAR2 and TRPV3 by collecting skin samples from 12 191 

control individuals and 12 AD patients. PAR2 and TRPV3 mRNA levels were significantly 192 

increased in pruritic areas of AD patients compared to the control group (Figure 4b). To 193 

investigate the role of PAR2/TRPV3 signaling pathway in the pathogenesis of chronic itch in 194 

AD, topical application of calcipotriol (MC-903), a vitamin D3 analogue, was employed to 195 

induce AD-like disease characterized by erythema, edema, dry skin and excoriation accompanied 196 

by spontaneous scratching (Li et al., 2006). Scratching bouts were significantly reduced in Trpv3-197 

/- and Par2-/- mice in the context of AD-like disease compared to control WT mice (Figure 4a). In 198 

histological studies, the ear skin of Trpv3-/- and Par2-/- mice appeared less hyperkeratotic and 199 

with less spongiosis compared with WT controls (Supplementary Figure S3a-f). Moreover, ear 200 

thickness was reduced in knockout (KO) mice treated with MC903 compared to WT controls 201 

(Supplementary Figure S3g). Importantly, PAR2 mRNA levels were increased significantly in 202 
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the skin of both WT and Trpv3-/- mice (Figure 4c). In contrast, TRPV3 mRNA levels were 203 

increased only in WT mice but not in Par2-/- mice with AD-like disease (Figure 4d). These 204 

findings suggest that PAR2 expression functions upstream of TRPV3 to regulate its expression. 205 

 206 

We also compared mRNA levels of cytokines in lesioned AD-like skin of WT, Par2-/- and Trpv3-207 

/- mice and found that the mRNA levels of IL-6, IL-17A and IgE receptor were significantly 208 

decreased in Trpv3-/- and Par2-/- mice relative to the control (Supplementary Figure S4). These 209 

data suggest that the PAR2/TRPV3 signaling pathway modulates the production of cytokines 210 

associated with AD-like symptoms in mice. 211 

 212 

To test whether AD-like pathology could be ameliorated by a blockade of the PAR/TRPV3 213 

signaling, topical treatment of the PAR2 antagonist FSLLRY or the TRPV3 antagonist 74a was 214 

applied to AD mice. Compared to the control, the 74a and FSLLRY-treated AD mice showed 215 

milder hyperkeratosis and acanthosis in the epidermis, less leukocyte infiltration and 216 

angiogenesis in dermis (Figure 5a-5h), reduced number of scratches (Figure 5i), and improved 217 

ear swelling (Figure 5j).  218 

 219 

DISCUSSION 220 

Using an interdisciplinary approach, our study shows that PAR2 functions upstream of TRPV3 in 221 

a signaling cascade for itch in keratinocytes. To the best of our knowledge, the present study 222 

provides the first direct behavioral evidence supporting the hypothesis that PAR2 mediates itch 223 

in a TRPV3-dependent manner. This conclusion is further supported by the evidence showing 224 

that PAR2-induced TSLP release requires TRPV3 in keratinocytes.  225 
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Our studies clarify the role of SLIGRL in itch, with respect to two distinct receptors: PAR2 and 226 

MrgprC11. It has been shown that SLIGRL mediates itch via MrgprC11 in DRGs (Liu et al., 227 

2011), giving rise to the notion that SLIGRL is not an agonist for PAR2. The present study shows 228 

that not only SLIGRL, but also 2fly, a PAR2 selective agonist, activates PAR2 in keratinocytes. 229 

Thus, SLIGRL-induced itch requires PAR2 in the skin which do not express Mrgprs (Liu et al., 230 

2011), and MrgprC11 in DRGs, respectively. These data reconcile previous conflicting results 231 

concerning whether SLIGRL is a PAR2 agonist (Kempkes et al., 2014), suggesting tissue and 232 

cell-type specific roles of SLIGRL. 233 

 234 

The finding that PAR2 acts upstream of TRPV3 is consistent with a recent in vitro study showing 235 

that attenuated TRPV3 function compromised the response of PAR2 to an agonist in 236 

keratinocytes (Park et al., 2017). Together with previous studies supporting the roles of PAR2 237 

and TRPV3, independently of one another, in AD (Barr et al., 2019, Yoshioka et al., 2006, 238 

Yoshioka et al., 2009), the present study provides a causal link between PAR2 and TRPV3 in 239 

acute itch as well as chronic pruritus associated with AD. The observation that TRPV3 antagonist 240 

74a attenuated PAR2-induced intracellular Ca2+ responses in mouse and human keratinocytes 241 

implies that the function of TRPV3 signaling in itch transmission relies at least in part on the 242 

presence of PAR2 in keratinocytes. Importantly, we found that the PAR2 response was impaired 243 

in mice lacking TRPV3. Because PAR2 agonists do not act on PAR2 in DRGs, this suggests that 244 

the impaired function of PAR2 originates in TRPV3 deficiency in the skin. Given that the PAR2-245 

TRPV3 signaling cascade has also been implicated in post-burn pruritus, with the former 246 

activating the latter through protein kinase A and protein kinase C-dependent pathways in 247 

keratinocytes (Park et al., 2017), we propose that regardless of etiology of skin diseases, the 248 



 

12 
 

PAR2-TRPV3 pathway may be a conserved mechanism for itch transmission. 249 

 250 

How does PAR2 cross-activate TRPV3 in itch transmission in keratinocytes? One possibility is 251 

that PAR2 sensitizes TRPV3 through intracellular PLC-Ca2+ signaling, which directly opens a 252 

TRPV3 channel (Figure 5k), reminiscent of Gq/11-coupled receptor-dependent PI(4,5)P2 253 

hydrolysis (Doerner et al., 2011). Whether there is direct physical interaction between PAR2 and 254 

TRPV3 remains to be determined. It should be noted that impaired itch behavior of PAR2 and 255 

Trpv3-/- and Par2-/- mice may also be attributed to their expression in other tissues such as 256 

immune cells and sensory neurons (Shpacovitch et al., 2008, Smith et al., 2002, Xu et al., 2002). 257 

In the context of AD, however, activation or upregulation of PAR2/TRPV3 should be sufficient 258 

to trigger spontaneous scratching behavior, as suggested by gain-of-function of TRPV3 259 

mutations. Accompanied by scratching, the PAR2-TRPV3 pathway in the skin would further 260 

trigger the release of TSLP, a proinflammatory cytokine (Figure 5k), resulting in heightened 261 

inflammation and exacerbation of the vicious itch-scratch cycle. On the other hand, TSLP release 262 

and induction of other type 2 cytokines in turn could activate their respective receptors and TRPs 263 

in sensory neurons, further contributing to itch responses.    264 

 265 

While PAR2 can cross activate TRPs, the mode of action of PAR2-TRPV3 in the skin may differ 266 

from PAR2-TRPs in the sensory neurons, where PAR2 could sensitize TRPV1/A1, resulting in 267 

neuropeptide release and cutaneous neurogenic inflammation (Gouin et al., 2018, Gouin et al., 268 

2017, Gouin et al., 2015). In sensory neurons, TRPV4 may be involved in PAR2-mediated 269 

scratching and inflammatory responses in the skin (Kittaka and Tominaga, 2017, Luo et al., 270 

2018) (Kim et al., 2016). On the other hand, given that TRPV1 is also expressed in the skin (Oh 271 
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et al., 2013), whether it is involved in PAR2-mediated response also remains to be determined. 272 

Nevertheless, accumulating evidence points to an important role for PAR2-TRPV3 pathway in 273 

the development of skin inflammatory response and pruritus, especially associated with AD.  274 

  275 

TRPV3 activation or sensitization can contribute to pruritus via PAR2-independent and –276 

dependent mechanisms. The gain-of-function mutations of TRPV3 evidently occurs independent 277 

of prior PAR2 activation, as shown in Olmsted Syndrome patients (Lin et al., 2012) and mice 278 

(Asakawa et al., 2006, Yoshioka et al., 2006, Yoshioka et al., 2009). In the context of AD or 279 

other chronic itch, TRPV3 can also be potentiated by PAR2 whose activation results from 280 

inflammatory response, manifested by TSLP release to activate its receptors in DRGs (Wilson et 281 

al., 2013). Taken together, our data suggest that the canonical Gq/11-protein coupled PLC-Ca2+ 282 

signaling pathway is engaged in SLIGRL-induced PAR2 activation in mouse keratinocytes, 283 

followed by Ca2+ mobilization from endoplasmic reticulum to activate TRPV3, followed by 284 

TSLP release in inflammatory skin disease conditions (Figure 5k). Therapeutically, TRPV3 or 285 

PAR2 can be either individually or concurrently inhibited to attenuate the allergic inflammation 286 

and AD-associated pruritus together (Barr et al., 2019, Nakajima et al., 2014), and such an 287 

inhibition could target skin exclusively or dampen neuroinflammation such as decreasing 288 

leukocyte recruitment via their targets in other tissues. The PAR2-TRV3 signaling interface may 289 

also be an AD-associated itch-specific axis for future exploration of therapeutic strategies for 290 

treating AD.  291 

 292 

MATERIALS & METHODS 293 

Animals 294 
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Adult male (2-3-month-old) Trpv3-/-, Par2-/- and Trpv4-/- mice and their wild-type (WT) 295 

littermates were used for the study (Trpv3-/-, Par2-/- mice were obtained from Jackson Laboratory 296 

and Trpv4-/- mice were purchased from Riken). Mice were housed in a controlled environment at 297 

a constant temperature of 23°C, a light/dark cycle of 12/12 h and humidity of 50±10% with food 298 

and water available ad libitum. All experimental procedures were performed in accordance with 299 

the National Institutes of Health guide for the care and use of laboratory animals and were 300 

approved by the Animal Studies Committee at Peking University First Hospital and Washington 301 

University School of Medicine. 302 

 303 

Itch Behavior 304 

Drugs were dissolved in 0.9% saline and injected intradermally at the nape of the neck: SLIGRL 305 

(50 µg, GenScript, Piscataway, NJ), trypsin (100 µg, Gibco), histamine (200 µg, Sigma-Aldrich)， 306 

BAM8-22 (150 µg, GenScript, Piscataway, NJ), 2-Furoyl-LIGRLO-amide (2fly, 10 µg, 307 

GenScript, Piscataway, NJ) or FSLLRY (100 µg, Tocris Bioscience, Minneapolis, MN). TRPV3 308 

antagonist 74a (100 µM, AbbVie) was first dissolved in DMSO and then diluted with saline to a 309 

final DMSO concentration of 8% for intradermal injections. Saline with 8% DMSO was used as 310 

vehicle control for 74a and FSLLRY. Scratching behavior was quantified by recording the 311 

number of scratching bouts in a period of 30 min. In the chronic itch model of AD, mouse ears 312 

were topically treated once a day with calcipotriol (MC-903) (Tocris Bioscience, 2 nmol/20 µl) 313 

dissolved in ethanol. Scratching behavior in chronic itch models was recorded for one hour as 314 

described (Zhao et al., 2013). 315 

 316 

Culture of mouse and human epidermal keratinocytes 317 
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The primary keratinocyte culture was prepared as previously described with minor modifications 318 

(Luo et al., 2012). Newborn mouse pups (P0–P3) or normal human skin specimens from plastic 319 

surgery or skin benign tumor resection were soaked in 10% povidone-iodine for 5 min. After 320 

rinsing in 70% ethanol several times, the skin was placed in a Petri dish containing phosphate-321 

buffered saline (PBS) solution with 2.5% Dispase II (Roche) and incubated at 4°C overnight. 322 

The epidermis was then separated from dermis. Keratinocytes were dissected by gentle scraping 323 

and flushing with CnT-07 medium (Advanced Cell Systems). Harvested cells were plated on 324 

coverslips covered with coating matrix (Life Technologies) and cultured in CnT-07 medium. 325 

Mouse cells were used after 72 hours and human cells were used after 7 days. 326 

 327 

Culture of mouse DRG 328 

DRGs were prepared from 3-4 week old mice (Kim et al., 2016). Mice were sacrificed, DRG 329 

were dissected out and incubated in Neurobasal-A medium (Gibco) containing 30 µl papain 330 

(Worthington) at 37°C for 20 min, and an additional 20 min digestion at 37°C with collagenase 331 

type 2 (Worthington). After washing, gentle trituration was performed using a glass pipette and 332 

cells were filtered through a 40 µm nylon cell strainer (BD Falcon). The homogenate was 333 

centrifuged at 500 xg for 5 min. Cell pellets were resuspended in culture medium composed of 334 

Neurobasal medium (Gibco, 92% vol/vol), fetal bovine serum (Invitrogen, 2% vol/vol), horse 335 

serum (Invitrogen, 2% vol/vol), GlutaMax (2 mM, Invitrogen, 1% vol/vol) and B27 (Invitrogen, 336 

2% vol/vol), and then plated onto coverslips coated with laminin and poly-ornithine. Calcium 337 

imaging was performed after culturing the cells overnight. 338 

 339 

Calcium imaging 340 
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Calcium imaging was performed on a Nikon Eclipse Ti microscope using Fura-2 AM 341 

(Invitrogen) as described(Kim et al., 2016). Drugs were diluted to the required concentrations in 342 

artificial cerebrospinal fluid buffer: 140 mM NaCl, 2.4 mM CaCl2, 1.3 mM MgCl2, 4 mM KCl, 343 

10 mM HEPES and 5 mM glucose. Results are presented as ratios of F340/F380. 344 

 345 

Immunofluorescence 346 

Primary antibodies used for immunofluorescence of cultured primary keratinocytes were: anti-347 

TRPV3 antibody (Alomone Labs, 1:300) and anti-PAR2 antibody (Santa Cruz, 1:100). This was 348 

followed by secondary antibodies conjugated to FITC (Jackson ImmunoResearch, 1:1000) or 349 

Cy3 (Jackson ImmunoResearch, 1:500). Samples were examined with a Nikon A1 confocal laser 350 

microscope. 351 

 352 

Western blot  353 

Frozen skin and DRG from WT and Trpv3-/- mice were ground in liquid nitrogen and then lysed 354 

in RIPA buffer (Keygen Biotech). Protein samples were resolved on a 10% SDS-PAGE gel and 355 

transferred onto a nitrocellulose membrane. The primary antibodies used were goat anti-TRPV3 356 

(Alomone Labs, 1:100) and goat anti-GAPDH (Leagene, 1:1000) antibodies. Blots were 357 

incubated in anti-goat horseradish peroxidase-conjugated secondary antibody and visualized by 358 

enhanced chemiluminescence (Millipore). 359 

 360 

AD patients and sample collection 361 

Human skin biopsy specimens were collected from patients diagnosed with AD based on typical 362 

manifestations of pruritus, eczema and chronic dermatitis. All patients agreed to enroll in the 363 
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study. The experiments on human samples were conducted after obtaining written informed 364 

consent and approval from the Clinical Research Ethics Committee of the Peking University 365 

First Hospital.  366 

 367 

Real time RT-PCR 368 

Total RNA was extracted from human or mouse skin tissues using TRIzol Reagent (Invitrogen). 369 

cDNA was synthesized using the high capacity cDNA reverse transcription kit (Applied 370 

Biosystems). cDNA was quantified with the SYBR Green Master Mix (Roche) using the Step 371 

OnePlus real-time PCR system (Applied Biosystems). The generated cycle threshold (Ct) value 372 

was normalized to the Ct value of GAPDH. Primers used are listed in Table S1. 373 

 374 

ELISA Assay 375 

The mouse TSLP ELISA kit was obtained from Abcam (ab155461). The cultured medium of 376 

mouse keratinocytes stimulated with SLIGRL for 48 hours was used for TSLP assay following 377 

the manufacturer’s instruction. OD450 values were measured on a microplate reader (Bio-Rad). 378 

 379 

Statistics 380 

Statistical comparisons were performed using Graphpad Prism (version 7.0, GraphPad), with 381 

student’s t test or one or two-way analysis of variance (ANOVA) as indicated (*P < 0.05; **P < 382 

0.01; ***P < 0.001;). Numerical results were presented as mean ± standard error of the mean 383 

(s.e.m.). 384 

 385 

Data availability 386 
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Datasets related to this article are available from the corresponding author upon reasonable 387 

request. 388 
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 563 

FIGURE LEGENDS 564 

Figure 1. TRPV3 is involved in PAR2-induced acute itch. (a) Acute itch behaviors of Trpv3-/- 565 

mice and their WT littermates induced by intradermal injections of SLIGRL (50 µg), trypsin 566 

(100 µg), 2fly (10 µg), histamine (200 µg), and BAM 8-22 (150 µg). Unpaired t tests. n = 6-8. 567 

(b) WT mice were pre-injected with vehicle (Veh) (8% DMSO), 74a (150 µg, i.d.) or FSLLRY 568 

(100 µg, i.d.) 15 min before testing the scratching behaviors elicited by SLIGRL, trypsin, or 2fly. 569 

One-way ANOVA followed by Tukey’s post hoc. n = 6-8 mice per group. (c) TRPV3 expression 570 
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in the skin and DRG of Trpv3+/+ and Trpv3-/- mice as determined by western blot. (d) Double 571 

immunofluorescence staining of PAR2 (green) and TRPV3 (red) in mouse keratinocytes. Scale 572 

bar, 20 µm. (e) Venn diagram showing the overlapping of PAR2 and TRPV3 in mouse 573 

keratinocytes. *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± s.e.m. 574 

 575 

Figure 2. TRPV3 is involved in PAR2/Ca2+ signaling in keratinocytes. (a) The percentages of 576 

responding keratinocytes from WT and Trpv3-/- mice stimulated with histamine (100 µM) and 577 

SLIGRL (50 µM). ***p < 0.001, unpaired t tests. n = 3 mice per group. (b) Representative 578 

fluorescence images of Fura2 (2 µM)-loaded WT, Trpv3-/- and Par2-/- keratinocytes stimulated 579 

with SLIGRL (50 µM). Scale bar, 20 µm. (c) Representative traces showing intracellular Ca2+ 580 

responses elicited by SLIGRL (50 µM) in WT mouse keratinocytes. (d, e) The effect of FSLLRY 581 

(100 µM) (d) and 74a (100 µM) (e) on SLIGRL-induced Ca2+ responses in WT mouse 582 

keratinocytes. (f) The effect of 74a (100 µM) on SLIGKV-induced (100 µM) Ca2+responses in 583 

human keratinocytes. (g) Quantified data showing the percentages of SLIGRL-responsive 584 

keratinocytes before and after the incubation of FSLLRY or 74a. ***p < 0.001, unpaired t test, n 585 

= 3 mice per group. Data are presented as mean ± s.e.m. 586 

 587 

Figure 3. The G-protein/PLC/Ca2+ pathway mediated PAR2 activation in keratinocytes, 588 

and PAR2 and TRPV3 were necessary for adequate TSLP release from keratinocytes.  589 

(a-c) Representative traces showing that Ca2+ transients elicited by SLIGRL (50 µM) in WT 590 

mouse keratinocytes were completely inhibited by co-incubation with 100 µM gallein, a Gβγ-591 

protein inhibitor (a) and 10 µM U73122, a PLC inhibitor (b), but were partially inhibited by co-592 

incubation with 10 µM DBHQ, an ATPase inhibitor (c). (d) Quantified data showing the 593 
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percentages of SLIGRL-responsive keratinocytes before and after the incubation of gallein, 594 

U73122 or DBHQ. *p < 0.05, **p < 0.01, ***p < 0.001, unpaired t test, n = 3 mice per group. (e) 595 

TSLP in cultured media after SLIGRL stimulation was assayed by ELISA. Keratinocytes from 596 

Trpv3-/- and Par2-/- mice released less TSLP in response to SLIGRL stimulation. n = 3 mice per 597 

group. *p < 0.05, **p < 0.01, two-way ANOVA with Bonferroni post hoc test. 598 

 599 

Figure 4. PAR2 and TRPV3 were involved in the pathogenesis of chronic itch. (a) WT, 600 

Trpv3-/- and Par2-/- mice were treated daily with a topical application of MC-903. Scratching 601 

numbers were recorded on day 1, 3, 5, and 7. Two-way ANOVA followed by Bonferroni post 602 

hoc. n = 6-8 mice per group. (b) Real time RT-PCR showing the relative levels of TRPV3 and 603 

PAR2 mRNA in pruritic skin lesions of AD patients and normal control. Unpaired t test. n = 12. 604 

(c, d) Relative levels of PAR2 mRNA (c) and TRPV3 mRNA (e) in the ears of MC-903-treated 605 

mice on day 5. Two-way ANOVA with Bonferroni post hoc. n = 4-5. Data are presented as mean 606 

± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001. 607 

 608 

Figure 5. Topical blockade of PAR2 and TRPV3 attenuated the manifestations of AD 609 

mouse model. (a-d) Ear appearance of WT mice topically applied with vehicle as a control (a), 610 

MC-903 (b), MC-903+74a (c), and MC-903+FSLLRY (d) for 7 days. (e-h) Hematoxylin-eosin 611 

staining showing changes in hyperkeratosis and inflammatory infiltration in the ears of 612 

corresponding mice in panels a-d, respectively. Scale = 50 µm. (i. j) The scratching numbers (i) 613 

and ear thickness increment (j) of mice treated with MC-903, MC-903+74a and MC-614 

903+FSLLRY for 7 days. One-way ANOVA followed by Tukey’s post hoc. n = 6-8 mice per 615 

group. (k) Diagram illustrating PAR2-TRPV3 signaling pathway in itch. 616 












