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Supplementary Methods 

Materials.  Fura-2 AM ester, 5-nitro-2-pyridyl disulfide (5-nitro-2-PDS), 2-pyridyl 

disulfide and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) were 

obtained from Dojindo, 2-aminoethyl diphenylborinate (2-APB), capsaicin, 

NG-nitro-L-arginine methyl ester (L-NAME), chlorpromazine (CPZ), brefeldin A, 

dynasore, filipin, edelfosine (ET), bradykinin and pluronic F-127 (F-127) from SIGMA, 

4-nitrophenyl disulfide, 4-tolyl disulfide and 4-methoxyphenyl disulfide from Aldrich, 

3-nitrophenyl disulfide, phenyl disulfide, diallyl disulfide, dipropyl disulfide, sodium 

tripolyphosphate, dimethyl sulfoxide (DMSO), glutathione (reduced form) and 

N-acetylcysteine (NAC) from Wako, 4-chlorophenyl disulfide and 4-aminophenyl 

disulfide from Tokyo Chemical Industry, dimethyloxalylglycine (DMOG) from Frontier 

Scientific, diphenylene iodonium (DPI) from CALBIOCHEM, DiI from Invitrogen, 

dithiothreitol (DTT), allyl isothiocyanate (AITC) and 5,5'-dithiobis(2-nitrobenzoic acid) 

(DTNB) from Nacalai Tesque.  DTNB-2Bio was synthesized as previously reported1.  

Compounds such as 5-nitro-2-PDS, 4-nitrophenyl disulfide, 4-tolyl disulfide, 

4-methoxyphenyl disulfide, 3-nitrophenyl disulfide, phenyl disulfide, diallyl disulfide, 

dipropyl disulfide, 4-chlorophenyl disulfide, 4-aminophenyl disulfide, 2-APB, capsaicin, 

DMOG, AITC, DPI, brefeldin A, CPZ, dynasore, filipin and DTNB were prepared as 

stock solutions in DMSO and were diluted at working concentrations in aqueous 

solutions containing 0.01% or 0.1% DMSO.  ET was prepared as stock solution in 

ethanol and was diluted at working concentration in aqueous solutions containing 0.1% 

ethanol.  L-NAME, F-127, NAC, bradykinin, reduced glutathione and DTT were 

directly dissolved in aqueous solutions at working concentrations. 
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cDNA cloning and plasmid construction.  Human TRPA1, TRPV2, PHD1, PHD2 

and PHD3 (GenBank accession No. NM007332.1, NM016113, BC036051, NM022051 

and NM022073, respectively) were cloned from Human Brain, whole Marathon-Ready 

cDNA (BD Biosciences) by applying a PCR-based approach designed to contain the 

untranslated leader sequence from the alfalfa mosaic virus2 and consensus sequence 

from the translation initiation3, and were subcloned into the expression vector pCI-neo 

(Promega), pEGFP-C (Clontech) and pCMV-tag2 (Stratagene).  TRPA1 Cys mutants 

and Pro mutant were constructed from TRPA1-pCIneo using overlap extension PCR4.  

C414S, C421S, C540S, C621S, C641S and C665S were constructed as previously 

reported5.  The primer pairs used for C3S, C59S, C104S, C173S, C192S, C199S, 

C213S, C258S, C273S, C308S, C462S, C608S, C633S, C651S, C703S, C727S, C773S, 

C786S, C834S, C856S, C1021S, C1025S, C1085S and P394A are summarized in 

Supplementary Table 3.  The double mutant C633S·C856S was generated by 

digesting C633S-pCIneo with XhoI and SpeI and inserting this fragment containing the 

mutation into the XhoI and SpeI sites of C856S-pCIneo.  Catalytically dead PHD1, 

PHD2 and PHD3 mutants were constructed from PHD1-pCIneo, PHD2-pCIneo and 

PHD3-pCIneo, respectively, using overlap extension PCR, as previously reported6–8.  

The primer pairs used for PHD1 mutant (H357A), PHD2 mutant (H374A) and PHD3 

mutant (H196A) are summarized in Supplementary Table 3.  The nucleotide 

sequences of the mutants were verified by sequencing the corresponding cDNA.  

Plasmids carrying TRPV1, TRPV3, TRPV4, TRPM2, TRPM7, TRPC1, TRPC4 and 

TRPC5 cDNA were used as previously described1.  The plasmid vector for the TRP 

cDNAs was pCI-neo, except pcDNA3.1 (Invitrogen) for TRPV4 cDNA.  Functional 

expression of TRPV2 was confirmed by testing the response to 10 M 

Nature Chemical Biology: doi:10.1038/nchembio.640



 5

L--lysophosphatidylcholine9 (Wako), that of TRPV3 and TRPV4 was confirmed by 

testing the response to 100 M 2-APB10, that of TRPM2 was confirmed by testing the 

response to 300 M H2O2
11 (Wako), that of TRPC1 and TRPC4 was confirmed by 

testing the response to 100 M carbachol12 (SIGMA) and that of TRPC5 was confirmed 

by testing the response to 100 M ATP13 (SIGMA) in [Ca2+]i measurement.  

Functional expression of TRPM7 was confirmed by testing the response to 1 mM Mg2+ 

(ref. 14) in electrophysiological measurement.  The plasmid carrying B2R was a gift 

from I. Hamachi (Kyoto University).   

 

Synthesis of AP-18 ((Z)-4-(4-chlorophenyl)-3-methylbut-3-en-2-oxime)15–18.  All 

chemical reagents were purchased from commercial suppliers.  Thin layer 

chromatography (TLC) was performed on silica gel 60 F254 precoated aluminum sheets 

(Merck) and visualized by fluorescence quenching.  Chromatographic purification was 

accomplished using flash column chromatography on silica gel 60 N (neutral, 40–50 μm, 

Kanto Chemical).  Proton nuclear magnetic resonance (1H NMR, 400 MHz) and 

carbon nuclear magnetic resonance (13C NMR, 100 MHz) spectra were recorded on a 

Varian MERCURYplus-400 spectrometer with the values given in ppm (Me4Si, TMS as 

internal standard) and J (Hz) assignments of 1H resonance coupling.  Electrospray 

ionisation in positive mode high resolution mass spectrometry (ESI-HR-MS) spectra 

were acquired on a Thermo Scientific Exactive mass spectrometer by K. Kuwata (Kyoto 

University). 

In argon atmosphere, a mixture of 

3-(acetoxy-(4-chlorophenyl)methyl)-but-3-en-2-one16,17 (14.0 g, 55.4 mmol), Pd(OAc)2 

(0.62 g, 2.77 mmol), 1,2-bis(diphenylphosphino)ethane (DPPE) (3.53 g, 8.86 mmol), 
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formic acid (HCOOH) (6.26 ml, 166 mmol) and triethylamine (NEt3) (23.0 ml, 166 

mmol) in dry THF (300 ml) was refluxed for 3 h.  After removal of the solvent, ethyl 

acetate (200 ml) and hexane (200 ml) were added to the residue.  The organic solution 

was washed with 5% citric acid solution, 10% NaHCO3 solution and brine.  The 

organic layer was dried over MgSO4, and the solvent was evaporated in vacuo.  The 

residue was purified by column chromatography (silica, hexane : ethyl acetate = 8 : 1 → 

4 : 1) to give colorless oil.  The colorless oil (6.50 g, 33.4 mmol) and hydroxylamine 

hydrochloride (NH2OH·HCl) (3.48, 50.1 mmol) were dissolved in dry ethanol (18 ml) 

and dry pyridine (36 ml), and were stirred overnight at 60°C.  After removal of the 

solvent, ethyl acetate (150 ml) and hexane (150 ml) were added to the residue.  The 

organic solution was washed with 0.1N HCl solution, 10% NaHCO3 solution and brine.  

The organic layer was dried over MgSO4, and the solvent was evaporated in vacuo.  

The residue was purified by recrystallization from ethyl acetate and hexane to afford 

AP-18 (6.8 g, 96%) as a white solid.  TLC (hexane : AcOEt, 4:1 v/v): Rf = 0.30; 

1H-NMR (400 MHz, CDCl3): δ 8.51 (s, 1H), 7.35 (d, 2H, J = 8.4 Hz), 7.25 (d, 2H, J = 

8.4 Hz), 6.85 (s, 1H), 2.16 (s, 3H), 2.05 (s, 3H); 13C-NMR (100 MHz, CDCl3): δ 158.4, 

135.8, 135.5, 133.1, 130.8, 129.9, 128.6, 14.4, 10.5; HR-MS (m/z): [M+H]+ calcd. for 

C11H13ClNO, 210.0680; found, 210.0675. 

AP-18 was prepared as stock solutions in DMSO and was diluted at working 

concentrations in aqueous solutions containing 0.01% DMSO. 

 

Measurement of changes in [Ca2+]i.  The fura-2 fluorescence was measured in 

HEPES-buffered saline (HBS) containing the following (in mM): 107 NaCl, 6 KCl, 1.2 

MgSO4, 2 CaCl2, 11.5 glucose and 20 HEPES (pH adjusted to 7.4 with NaOH).  For 
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Supplementary Figure 9a, Supplementary Figure 21e,f and Supplementary Figure 

22g,h, the fura-2 fluorescence was measured in bicarbonate/CO2 buffered solution 

containing following (in mM): 124.8 NaCl, 5 KCl, 1.2 KH2PO4, 1.3 MgSO4, 2 CaCl2, 

24 NaHCO3 and 10 glucose (pH adjusted to 7.4 with 5% CO2-bubbling).  Fluorescence 

images of the cells were recorded and analyzed with a video image analysis system 

(AQUACOSMOS; Hamamatsu Photonics) according to the manufacturer’s instructions.  

The 340:380-nm ratio images were obtained on a pixel-by-pixel basis.  Fura-2 

measurements were carried out at 21 ± 1oC in HBS.  The 340:380-nm ratio images 

were converted to Ca2+ concentrations by in vivo calibration using 5 μM ionomycin as 

described previously5.  Hyperoxic solution was achieved by bubbling with 22, 24, 26, 

28, 30, 32, 34, 36, 80, 95 or 100% O2 (balanced with N2) gas for at least 20 min before 

cell perfusion.  Hypoxic solution was achieved by bubbling with 0, 5, 8, 10, 12, 14, 16 

or 18% O2 (balanced with N2) gas at least 20 min before cell perfusion and by blowing 

the respective gas over the surface of the experimental chamber using a modified dish.  

The concentration of dissolved O2 in the chamber solution was determined with an O2 

microelectrode (InLab 605; METTLER TOLEDO).  pH of 7.4 was maintained in the 

buffers after bubbling with N2 and/or O2 gas.  Unless otherwise indicated, dissolved 

PO2 measured in hypoxic, normoxic and hyperoxic solutions were 10% O2, 20% O2 and 

86% O2, respectively.   

 

Electrophysiology.  For electrophysiological measurements, coverslips with cells were 

placed in dishes containing the solutions.  Currents from cells were recorded at room 

temperature (22–25°C) using patch-clamp techniques of whole-cell mode, cell-attached 

mode, excised outside-out mode and excised inside-out mode, with EPC-9 (Heka 
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Electronic) or Axopatch 200B (Molecular devices) patch-clamp amplifier as previously 

described19.  The patch electrodes prepared from borosilicate glass capillaries had a 

resistance of 2–4 M for whole cell recordings and 5–7 M for single-channel 

recordings.  Current signals were filtered at 5 kHz with a four-pole Bessel filter and 

digitized at 10 or 20 kHz.  PULSE (version 8.8; Heka Electronic) or pCLAMP 

(version 10.0.2; Molecular devices) software was used for command pulse control, data 

acquisition and analysis.  For whole cell recordings, series resistance was compensated 

(to 70–80%) to minimize voltage errors.  Ramp pulses were applied every 5 or 10 sec 

from –100 mV to +100 mV or from +100 mV to –100 mV at a speed of 1.1 mV ms–1 

from a holding potential (Vh) of 0 mV.  The extracellular (bath) solution contained the 

following (in mM): 100 NaCl, 2 Ca-gluconate and 10 HEPES (pH 7.4 adjusted with 

NaOH, and osmolality adjusted to 320 mmol kg–1 with D-mannitol).  Intracellular 

(pipette) solution contained the following (in mM): 100 Cs-aspartate, 5 BAPTA, 1.4 

Ca-gluconate, 2 Na2ATP, 2 MgSO4, 1 MgCl2, 10 HEPES and 10 Na5P3O10 (pH 7.4 

adjusted with CsOH, and osmolality adjusted to 320 mmol kg–1 with D-mannitol).  The 

free Ca2+ concentration was 30 nM calculated with CaBuf software (provided by Dr. 

Droogmans, G., Katholieke Universiteit Leuven, Leuven, Belgium).  For 

Supplementary Figure 4d,e, Ca-gluconate was omitted from bath solution and added 5 

mM EGTA.  For Figure 5b–d,h, Supplementary Figure 13b and Supplementary 

Figure 17a–d, pipette solution contained the following (in mM): 50 Cs-aspartate, 50 

CsCl, 10 Na5P3O10, 0.3 2-oxoglutarate, 0.1 FeCl2, 3 ascorbic acid and 10 HEPES in the 

presence or absence of 0.67 M purified PHD2 (pH 7.4 adjusted with CsOH, and 

osmolality adjusted to 300 mmol kg–1 with D-mannitol).  For the recording of nodose 

ganglion neurons, Ca-gluconate was omitted from pipette solution.  Percentage 
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suppression of the current (%) in Supplementary Figure 2b, Supplementary Figure 

9f and Supplementary Figure 21g,h were calculated according to the following 

equation; percentage suppression of the current (%) = 100×(1 – IA/ICtl), where ICtl and IA 

are whole cell currents observed before and after application of agents.  Percentage 

increment of the current (%) in Figure 5d,h and Supplementary Figure 13b were 

calculated according to the following equation; percentage increment of the current (%) 

= 100×(IA/ICtl – 1), where ICtl and IA are whole cell currents observed before and after 

application of agents.  Single-channel recordings were performed in cell-attached and 

in inside-out and outside-out excised patches configuration.  Single-channel events 

were detected using the 50% threshold detection method.  From the single-channel 

events list, histograms of channel open dwell time distributions were plotted and fitted 

using a maximum likelihood procedure with correction for missed events.  The 

minimal number of exponential components required to fit the distribution was 

determined by chi-square statistics.  Mean open durations were calculated, from the 

open dwell time fitted components, as a weighted mean from the open durations and 

proportions of each component.  The NPO of single-channels was calculated by 

dividing the total time spent in the open state by the total time of continuous recording 

(30 sec) in the patches containing active channels.  The amplitude of single-channel 

currents was measured as the peak-to-peak distance in Gaussian fits of the amplitude 

histogram.  Activity plots of NPO recorded from cell-attached patches, as calculated for 

a 5-sec to Vh of 60 mV, and plotted as a vertical bar on the activity histogram.  For 

cell-attached recordings, the pipette solution contained the following (in mM): 100 CsCl, 

1 MgCl2, 1 EGTA and 10 HEPES (pH 7.4 adjusted with CsOH, and osmolality adjusted 

to 300 mmol kg–1 with D-mannitol).  For Supplementary Figure 3h,i and 
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Supplementary Figure 4a, the extracellular side was exposed to a bath solution 

containing (in mM) 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES and 10 glucose (pH 

7.4 adjusted with NaOH, and osmolality adjusted to 300 mmol kg–1 with D-mannitol).  

For Supplementary Figure 17e,f, the extracellular side was exposed to a bath solution 

containing (in mM) 5 NaCl, 140 KCl, 1 MgCl2, 5 EGTA, 10 HEPES and 10 glucose 

(pH 7.4 adjusted with NaOH, and osmolality adjusted to 300 mmol kg–1 with 

D-mannitol).  For inside-out patch recordings, the pipette solution contained the 

following (in mM): 100 CsCl, 1 MgCl2, 1 EGTA and 10 HEPES (pH 7.4 adjusted with 

CsOH, and osmolality adjusted to 300 mmol kg–1 with D-mannitol).  The intracellular 

side was exposed to bath solution containing the following (in mM): 50 Cs-aspartate, 50 

CsCl, 1 MgCl2, 1 CaCl2, 10 EGTA, 10 Na5P3O10 and 10 HEPES (pH 7.4 adjusted with 

CsOH, and osmolality adjusted to 300 mmol kg–1 with D-mannitol).  For Figure 2f,g 

and Supplementary Figure 3g,j, concentration of Na5P3O10 was reduced from 10 to 1 

mM.  For outside-out patch recordings, the intracellular and the bath solution were 

identical to that used for whole cell recordings.  Percentage suppression of the NPO 

(%) in Figure 2f,g and Supplementary Figure 3d were calculated according to the 

following equation; percentage supression of the NPO (%) = 100×(1 – NPO A/NPO Ctl), 

where NPO Ctl and NPO A indicate mean NPO of 60 sec obtained before and 4-min after 

application of 10 μM AP-18 or 10 mM DTT.  pH of 7.4 was maintained in the buffers 

after bubbling with N2 and/or O2 gas.  Unless otherwise indicated, dissolved PO2 

measured in hypoxic, normoxic and hyperoxic solutions were 10% O2, 20% O2 and 

86% O2, respectively.   

 

DTNB-2Bio labeling assay.  The DTNB-2Bio labeling assay was performed as 
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previously described with modifications1.  HEK293 cells (~5×106) transfected with 

GFP-TRPA1 (GFP-WT), GFP-C633S, GFP-C856S or vector were washed with 

phosphate-buffered saline (PBS).  The surface membrane was permeabilized by 

exposure to PBS containing 0.001% digitonin (SIGMA) for 5 min.  The cells were 

collected and incubated in HBS solution containing 50 μM DTNB-2Bio for 20 min at 

room temperature.  The cells were washed with HBS and lysed in RIPA buffer (pH 

8.0) containing 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% 

SDS and 50 mM Tris.  Cell lysates were incubated batch-wise with NeutrAvidin-Plus 

beads (Thermo Scientific) for 4 h at 4oC with constant shaking.  The beads were rinsed 

three times with RIPA buffer by centrifugation at 15,000 rpm for 1 min.  The proteins 

were eluted in RIPA buffer containing 50 mM DTT for 1 h and denatured in SDS 

sample buffer containing 50 mM DTT for 30 min at room temperature.  The proteins 

were analyzed by 7.5% SDS-PAGE and WB using an antibody to GFP (Clontech).   

 

Expression and purification of recombinant PHD2.  HEK293T cells were 

transfected with PHD2-pCMV-tag2 using Lipofectamine 2000 in 100-mm tissue culture 

dishes.  Thirty-six hour after transfection, the cells from 20 dishes were washed with 

PBS and lysed in 10 ml of Triton buffer (pH 7.5) containing 50 mM Tris, 150 mM NaCl, 

0.1% Triton X-100 and protease inhibitors.  After centrifugation for 15 min at 17,000 g, 

the supernatant containing Flag-tagged PHD2 was loaded onto 1 ml of anti-Flag affinity 

gel column (SIGMA), equilibrated in advance.  After washing the column with 5 ml of 

Triton buffer and 15 ml of Tris-buffered saline (TBS) (pH 7.5) containing 50 mM Tris 

and 150 mM NaCl, the bound protein was eluted with 3 ml of elution buffer (300 g 

ml–1 Flag peptide (SIGMA) in TBS buffer).  The eluate was concentrated to 300 l, 
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and the buffer was exchanged simultaneously into Cs buffer (pH 7.4 adjusted with 

CsOH) containing 50 mM CsCl, 50 mM CsOH, 50 mM L-aspartic acid and 10 mM 

HEPES using Amicon Ultra-4 centrifugal filter units (30-kDa cut-off) (Millipore). 

 

Coimmunoprecipitation in HEK293 cells.  Forty eight hour after transfection, 

HEK293 cells were lysed in RIPA buffer.  The cell lysate was immunoprecipitated with 

M2 monoclonal antibody to Flag (SIGMA) or monoclonal antibody to glutathione 

(VIROGEN) in the presence of protein A-sepharose beads (GE Healthcare) by rocking 

for 4 h at 4oC.  The immune complexes were washed three times with RIPA buffer and 

resuspended in SDS sample buffer containing 50 mM DTT for 30 min at room 

temperature.  The proteins were analyzed by 7.5% SDS-PAGE and WB using antibody 

to GFP (Clontech), polyclonal antibody to Flag (SIGMA) or antibody to 

TRPA1(hydroxylated Pro394) raised against the peptide containing 

LKNLRP(OH)EFMQ (SIGMA).  For Figure 4d, Supplementary Figure 10e and 

Supplementary Figure 14b, the cells were pretreated with 1 mM DMOG for 48 h to 

stabilize the enzyme-substrate interaction20.  Dissolved PO2 measured in hypoxic, 

normoxic and hyperoxic solutions were 10% O2, 20% O2 and 86% O2, respectively.   

 

TIRF microscopy.  TIRF images were acquired using a TIRF illumination system 

(IX2-RFAEVA-2, Olympus) mounted on an inverted microscope equipped with an 

autofocus system (IX81-ZDC2, Olympus).  A diode-pumped solid state 488-nm laser 

(kyma488, 10 milliwatts, MELLES GRIOT) was used for total fluorescence illumation, 

and a 510-nm long pass filter was used as an emission filter.  Images were captured by 

a high-sensitivity EM-CCD camera (ImagEM, Hamamatsu Photonics) operated with 
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MetaFluor software (Molecular Devices).  HEK293 cells transfected with GFP-TRPA1 

were plated onto poly-L-lysine-coated glass coverslips (Iwaki) and were placed in a 

custom chamber with HBS solution at room temperature.  Prior to the addition of any 

agents, cells were first imaged for 2 min to establish the base line.  For fluorescence 

intensity analysis, regions of interest with areas between 5–10% of the visible footprint 

of individual cells were drawn.  Data are presented as the ratio of the fluorescence 

intensity at each point divided by the fluorescence intensity at the start of the 

experiment (F/F0), where each value was background-subtracted to correct for the 

dark-field noise of the camera.  Images were captured every 10 sec.  Dissolved PO2 

measured in hypoxic and normoxic solutions were 10% O2 and 20% O2, respectively.   

 

siRNA suppression of endogenous PHDs in HEK293 cells.  The sense siRNA 

sequences 5’-AACCAGGCTGTCGAAGCATTG-3’, 

5’-AACATCGAGCCACTCTTTGAC-3’ and 5’-AAGGTGTCCAAGTACCTGTAT-3’ 

for PHD1, 5’-AACAAGCACGGCATCTGTGTG-3’, 

5’-AAGGACATCCGAGGCGATAAG-3’ and 5’-AAGGTAAGTGGAGGTATACTT-3’ 

for PHD2 and 5’-AAGGAGAGGTCTAAGGCAATG-3’, 

5’-AACAGGTTATGTTCGCCACGT-3’ and 5’-AACGGTGATGGTCGCTGCATC-3’ 

for PHD3 were used.  To construct siRNA oligomers, the Silencer siRNA construction 

kit (Ambion) was used.  The GAPDH siRNA used was the control provided with the 

kit.  Transfection of siRNAs to HEK293 cells was carried out using Lipofectamine 

2000 (Invitrogen).  Cells were transfected with total 200 pmol siRNA in a 60-mm 

culture dish.  Total RNA was extracted using ISOGEN (Wako), following the 

manufacturer’s instructions.  The concentration and purity of RNA were determined 
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spectrophotometrically.  Suppression of RNA expression was confirmed by RT-PCR 

analyses (30 cycles) using specific primers listed in Supplementary Table 4.  RT-PCR 

was performed using the LA-PCR kit (TaKaRa), according to the manufacturer’s 

instructions.  The cells treated with siRNAs were subjected to [Ca2+]i measurement 

36–48 h after transfection. 

 

Cell surface labeling experiment.  The cell surface GFP-TRPA1 was measured by 

biotinylation as previously described1 with modifications.  The cells were preincubated 

with 200 μM brefeldin A (for Supplementary Figure 18h) or 5 μg ml–1 CPZ (for 

Supplementary Figure 18i) for 3–4 h, and then were washed with PBS.  After 

incubation in normoxic or hypoxic HBS solution for 5 min, the cells were incubated 

with 0.5 mg ml–1 Sulfo-NHS-SS-Biotin (Thermo Scientific) in normoxic or hypoxic 

HBS solution for 5 min at room temperature.  The cells were washed with PBS 

containing 100 mM glycine three times to stop the biotinylation reaction and to remove 

free biotin.  The cells were then lysed in RIPA buffer.  After centrifugation, the 

supernatant was collected and incubated with streptavidin-agarose beads (Thermo 

Scientific) overnight at 4°C.  The samples were washed with RIPA buffer six times.  

The proteins were eluted in RIPA buffer containing 50 mM DTT for 1 h and denatured 

in SDS sample buffer containing 50 mM DTT for 30 min at room temperature.  The 

proteins were analyzed by 7.5% SDS-PAGE and WB using an antibody to GFP 

(Clontech).  Dissolved PO2 measured in hypoxic and normoxic solution were 10% O2 

and 20% O2, respectively.   

 

Mice.  Mice were housed in a standard environmental condition (12-h light/12-h dark 
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cycle; about 23°C).  All experimental procedures were performed in accordance with 

the National Institute of Health Guide for the Care and Use of Laboratory Animals and 

approved by the Institutional Animal Use Committees of Kyoto University and 

Kagoshima University.  Experiments were performed using C57BL/6J, 129S6, Trpa1 

KO, Phd1 KO and Phd3 KO mice.  C57BL/6J mice were used as nontransgenic 

controls for Trpa1 KO mice, while 129S6 mice were used as nontransgenic controls for 

Phd1 KO and Phd3 KO mice.  Trpa1 KO mice were purchased from the Jackson 

Laboratory and genotyped as previously described21.  Phd1 KO and Phd3 KO mice 

were derived as previously described22,23.   

 

Coimmunoprecipitation of endogenous TRPA1 with PHD2 proteins.  Mouse DRG 

was lysed in RIPA buffer and the cell extract was immunoprecipitated with antibody to 

PHD2 (Novus Biologicals) in the presence of protein A-sepharose beads (GE 

Healthcare) by rocking for 4 h at 4oC.  The immune complexes were washed three 

times with RIPA buffer and resuspended in SDS sample buffer containing 50 mM DTT 

for 2 h at room temperature.  The proteins were analyzed by 7.5% SDS-PAGE and WB 

using an antibody to TRPA1, which was a gift from Y. Kubo24.   

 

RNA isolation and RT-PCR in mouse nodose ganglion or DRG neurons.  Total 

RNA was extracted using ISOGENE, following the manufacturer's instructions.  The 

concentration and purity of RNA were determined spectrophotometrically.  Two 

hundred nanograms of total RNA were reverse-transcribed into first-strand cDNA by use 

of the RNA LA PCR kit at the final volume of 20 µl.  Expression levels of PHD1–3 

RNA in mouse nodose ganglion or DRG neurons were determined by RT-PCR.  The 
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primers used for PCR amplification are summarized in Supplementary Table 4.  PCR 

was conducted with a GeneAmp PCR system 9700 (Applied Biosystems) using LA Taq 

polymerase with GC buffer (TaKaRa) for 32 cycles under the following conditions: 

initial denaturation was 3 min at 95°C, then 30 sec at 95°C, following by a 30-sec 

annealing step at 55°C and 30-sec elongation at 72°C, and a final elongation of 7 min at 

72°C.  Predicted lengths of PCR products are 543, 388 and 468 base pairs (bp) for 

PHD1, PHD2 and PHD3, respectively.   

 

Immunohistochemistry of airway- and lung-identified nodose ganglion neurons 

and DRG neurons.  For immunohistochemistry of airway- and lung-identified nodose 

ganglion neurons, WT mice were anaesthetized with pentobarbital (50 mg kg–1).  To 

label neurons that project fibres into the trachea, mice were orotracheally intubated, and 

50 μl of the tracer DiI (dissolved in 100% ethanol and diluted in sterile saline to a final 

concentration of 0.5 mg ml–1 in 1% ethanol) was instilled into the tracheal lumen.  On 

the other hand, in order to label neurons that project fibres deep into the lung, mice were 

transdermally injected with 50 μl of DiI (0.5 mg ml–1) into the right lung.  Eight days 

after injection, the mice were killed by an overdose of pentobarbital (150 mg kg–1).  

The nodose ganglions were removed from the mice without perfusion of fixation 

solution.  The samples were then rinsed with PBS, embedded in OCT compound 

(Sakura Finetek) and 'snap-frozen' in dry ice and acetone and stored at –80°C.  

Cryostat sections (3 μm in thickness) were affixed to micro slides (MATSUNAMI), 

dried at room temperature, fixed in cold acetone for 10 min and then dried at room 

temperature.  The samples were rehydrated in TBS, pH 7.6, and blocked with 1% 

bovine serum albumin (BSA) and 5% normal goat serum (NGS) in TBS for 1 h at room 
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temperature.  The samples were incubated with anti-mouse TRPA1 antibody24 as a 

primary antibody overnight at 4°C, washed with 1% BSA and 5% NGS in TBS at room 

temperature and then incubated with Alexa Fluor 488-conjugated goat anti-rabbit IgG 

(Invitrogen) as a secondary antibody for 2 h at 4°C.  Followed by washing with 1% 

BSA and 5% NGS in TBS, the coverslips were sealed with PermaFluor Aqueous 

(IMMUNONTM, SHANDON) to prevent evaporation and stored at 4°C before 

imaging.   

For immunohistochemistry of DRG neurons, 18 h after of DRG isolation, the 

neurons were fixed with 4% paraformaldehyde and then permeabilized with 0.1% Triton 

X-100.  The neurons were incubated with anti-mouse TRPA1 antibody24 followed by 

incubation with Alexa Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen).  

Thereafter the neurons were incubated with rabbit IgG to mask the residual reactivity of 

Alexa Fluor 488-conjugated goat anti-rabbit IgG, and then incubated with Alexa Fluor 

546 (Invitrogen)-conjugated anti-TRPA1(hydroxylated Pro394) which was prepared as 

previously described25.   

The fluorescence images were acquired with a confocal laser-scanning 

microscope using the 488-nm line of an argon laser for excitation and a 505–525 nm 

band-pass filter for emission and 543-nm line of a He-Ne laser for excitation and a 

560-nm long-pass filter for emission.  The specimens were viewed at high 

magnification using plan oil objectives (60×, 1.40 NA, Olympus).   

 

Semi-quantitative RT-PCR analysis of PHD1–3.  Expression levels of PHD1–3 

RNA in mouse DRG or nodose ganglion neurons were compared by semi-quantitative 

RT-PCR.  The primers used for PCR amplification are summarized in Supplementary 
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Table 4.  PCR was conducted under the following conditions: 94°C for 5 min followed 

by 30 cycles for PHD1 and PHD2 or 32 cycles for PHD3 at 94°C for 30 sec, 55°C for 

30 sec and 72°C for 40 sec, and finally 72°C for 7 min.  Predicted lengths of PCR 

products are 543, 388 and 468 bp for PHD1, PHD2 and PHD3, respectively.  Plasmids 

carrying PHD1, PHD2 or PHD3 cDNA were used as control. 

 

siRNA suppression of endogenous PHDs in DRG neurons.  Freshly isolated DRG 

neurons were nucleofected with siRNAs using the Basic Neuron SCN Nucleofector kit 

and SCN Basic Neuro Program 6 (Amaxa) according to manufacturer’s protocol.  The 

siRNA for directed to PHD1 (ON-TARGETplus SMARTPool, L-051750), PHD2 

(ON-TARGETplus SMARTPool, L-040757), PHD3 (ON-TARGETplus SMARTPool, 

L-040261) and negative control siRNA (ON-TARGETplus Non-targeting siRNA, 

D-001810) were purchased from Dharmacon.  Nucleofected DRG neurons were plated 

on 24 well culture dish coated with poly-L-lysine and laminin.  Total RNA was 

extracted using NucleoSpin RNA XS (Macherey-Nagel) 36 h after transfection, 

following the manufacturer’s instructions.  The concentration and purity of RNA were 

determined spectrophotometrically.  Suppression of RNA expression was confirmed by 

RT-PCR analyses (32 cycles) using specific primers listed in Supplementary Table 4.  

RT-PCR was performed using the LA-PCR kit, according to the manufacturer’s 

instructions.  The cells treated with siRNAs were subjected to [Ca2+]i measurement 

36–48 h after transfection.  In [Ca2+]i measurement, siRNAs were cotransfected with 

pEGFP-F, and neurons with green fluorescence were analyzed. 

 

Recording of multifiber vagal and superior laryngeal afferent discharges.  WT or 
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Trpa1 KO mouse was anesthetized with intraperitoneal injection of urethane.  

L-shaped cannula perforated at the corner was inserted to the trachea.  The animal was 

then artificially ventilated with room air and paralyzed with 0.15 mg kg–1 panchronium 

bromide.  Acute unilateral nerve sectioning was performed as follows: right cervical 

vagal trunk was exposed and cut immediately below the point of branching off to the 

superior laryngeal nerve; right superior laryngeal nerve was exposed and cut.  To 

record the afferent activities, the distal cut end was placed on a pair of silver hook 

electrodes.  Multifiber vagal and superior laryngeal nerve discharges were amplified 

(10,000×, AVB-8, Nihon Kohden) and displayed on an oscilloscope (5113, Tektronix, 

Beaverton).  The lower and higher cut-off frequencies of the recording system were 

100 and 3,000 Hz, respectively.  Nerve discharges were full-wave rectified, leaky 

integrated (time constant = 1 sec, EI-601G, Nihon Kohden) and stored in a hard disk 

through an analog-to-digital converter (PowerLab, ADInstrument) together with original 

nerve discharges, electrocardiogram, inspired PO2 and PCO2 and the event signal.  At 

the end of each experiment, the vagal or superior laryngeal nerve was cut proximally to 

the recording electrode and the mean level of instrumentation noise was determined 

over the period of several minutes.  At the time of reproduction, rectified and 

integrated vagal or superior laryngeal nerve activity was subtracted by this noise level to 

obtain each nerve activity.  During the control period, the animal was breathed room 

air.  The animal was then challenged with five levels of inspired O2 (10, 13, 15, 20 and 

100% O2).  Normoxic and hyperoxic gas challenges lasted 35 sec, and hypoxic 

challenge lasted 25 sec, respectively.  The order of applied gas conditions was chosen 

randomly for each experiment, and gas challenge was followed by a 5-min interval in 

room air.  Throughout the experiment, rectal temperature was kept constant at 36.5 ± 
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1.0°C by a heating pad connected to a thermo controller.   
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Supplementary Figure 1.  Pharmacological characterization of hyperoxia-activated TRPA1 
responses.  (a) TRPA1 responses evoked by the 19-min treatment with hyperoxic solution are sustained 
after switching the condition to normoxia alone or in combination with vehicle for AP-18 (0.01% DMSO) 
or 300 M L-NAME but are suppressed after switching the condition to normoxia in conbination with 1 
mM NAC, 1 mM DTT or 10 M AP-18 in HEK293 cells.  Averaged time courses and percentage 
suppression of [Ca2+]i rises at 1,800 sec relative to maximum [Ca2+]i rises (Δ[Ca2+]i) up to 1,200 sec (n = 
18–26).  *P < 0.05, **P < 0.01 and ***P < 0.001 compared to cells treated with normoxic solution.  (b) 
Averaged time courses and  Δ[Ca2+]i induced by hyperoxia (n = 11–28) in Ca2+-free, 0.5 mM EGTA- or 2 
mM Ca2+-containing solution are shown for HEK293 cells transfected with TRPA1 or vector.  ***P < 
0.001.  (c) TRPA1 responses evoked by the 19-min treatment with mild hyperoxic solution are suppressed 
by normoxic solution in HEK293 cells.  Averaged time courses and percentage suppression of average
[Ca2+]i rises at 1,700–1,800 sec relative to Δ[Ca2+]i up to 1,200 sec (n = 20–21).  Dissolved PO2 measured 
in mild hyperoxic solution is 209 mmHg (28% O2).  **P < 0.01.  (d) TRPA1 responses evoked by the 
5-min treatment with hyperoxic solution are suppressed after switching the condition to normoxia alone or 
in combination with 1 mM NAC, 1 mM DTT or 300 M L-NAME in HEK293 cells.  Averaged time 
courses and percentage suppression of [Ca2+]i rises at 900 sec relative to Δ[Ca2+]i up to 360 sec (n = 
13–20).  ***P < 0.001 compared to cells treated with normoxic solution.  (e) TRPA1 responses evoked by 
the 5-min treatment with 10 M 5-nitro-2-PDS are suppressed by 1 mM DTT, but not by normoxic 
solution in HEK293 cells.  Averaged time courses and percentage suppression of [Ca2+]i rises at 900 sec 
relative to Δ[Ca2+]i up to 360 sec (n = 19–25).  ***P < 0.001 compared to cells maintained with 
5-nitro-2-PDS.  (f) DPI fails to suppress the response of TRPA1 to hyperoxia.  Effect of 10 M DPI on 
TRPA1 responses evoked by hyperoxia.  Thirty-min prior to the treatment with hyperoxic solution and 
continuing during the treatment, cells are incubated with DPI or its vehicle (0.01% DMSO).  Averaged 
time courses and Δ[Ca2+]i (n = 19–28).  ***P < 0.001 compared to TRPA1-expressing HEK293 cells 
treated with hyperoxic solution without DPI.  Data points are mean ± s.e.m..    
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Supplementary Figure 2.  Electrophysiological and pharmacological characterization of 
hyperoxia-activated TRPA1 whole cell currents.  (a) Suppression of hyperoxia-evoked whole cell 
currents by vehicle for AP-18 (0.01% DMSO), 10 μM AP-18 and 10 mM DTT in TRPA1-expressing 
HEK293T cells.  Representative time courses of outward and inward currents recorded at +100 and –100 
mV, respectively, under ramp clamp.  Corresponding I-V relationships at the time points 1–3.  (b) 
Percentage suppression of the suppressed current (2–3) at 2-min after the peak relative to the induced 
current at the peak (2–1). (n = 5–7) at  –100 mV.  *P < 0.05 compared to cells maintained in hyperoxia 
without the agents.  Data points are mean ± s.e.m..
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Supplementary Figure 3.  Electrophysiological and pharmacological characterization of 
hyperoxia-activated TRPA1 single channel currents.  (a–j) Single channel TRPA1 currents from 
inside-out patches (a–d,g,j), outside-out patches (e,f) and cell-attached patches (h,i).  In (a), 
representative current traces of single TRPA1 channel evoked by hyperoxia at different voltages in 
inside-out patches excised from TRPA1-expressing HEK293T cells are shown.  Arrowheads represent the 
closed state.  In (b), current-voltage (i-V) relationship for unitary currents is shown (n = 5–8).  In (c), 
suppression of hyperoxia-evoked single channel currents by AP-18 and DTT at –60 mV in inside-out 
patches excised from HEK293T cells expressing TRPA1 is shown.  Time-expanded current traces in 
normoxia (trace 1) and in hyperoxia without (trace 2) and with the agents (trace 3) are shown in the 
bottom panels.  In (d), percentage suppression of hyperoxia-induced NPO in control (n = 29) and after 
5-min application of AP-18 (n = 8) or DTT (n = 11) is shown.  ***P < 0.001 compared to cells maintained 
in hyperoxia without the agents.  In (e), single channel activities evoked by application of hyperoxic 
solutions at –60 mV in outside-out patches excised from HEK293 cells transfected with TRPA1 are 
shown.  Time-expanded current traces before (trace 1) and during (trace 2) application are also shown in 
the bottom panels.  In (f), averages of NPO representing single TRPA1 channel activity in normoxia (n = 
6) and hyperoxia (n = 6) are shown.  **P < 0.01.  In (g), suppression of hyperoxia-evoked single channel 
currents by 5 mM reduced glutathione and 10 mM DTT at –60 mV in inside-out patches excised from 
HEK293 cells expressing TRPA1 are shown.  Percentage suppression of hyperoxia-induced NPO is shown 
in Figure 2f.  In (h), single channel activities evoked by application of hyperoxic solutions at Vh of 60 mV 
in cell-attached patches from HEK293 cells transfected with TRPA1 are shown.  Time-expanded current 
traces before (trace 1), during (trace 2) and after (trace 3) exposure to hyperoxic solution are also shown 
in the bottom panels.  In (i), averages of NPO show single TRPA1 channel activity before, during, and 
after 4-min exposure to hyperoxic solution (n = 7) are shown.  *P < 0.05 compared to cells maintained in 
hyperoxia.  In (j), suppression of 10 μM 5-nitro-2-PDS-evoked single channel currents by 5 mM reduced 
glutathione and 10 mM DTT at –60 mV in inside-out patches excised from HEK293 cells expressing 
TRPA1 are shown.  Percentage suppression of 5-nitro-2-PDS-induced NPO is shown in Figure 2g.  Data 
points are mean ± s.e.m..
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Supplementary Figure 4.  Activation patterns of ionic current and Ca2+ responses in response to 
hyperoxia.  (a) Single channel activities evoked by application of hyperoxic solution at Vh of 60 mV in 
cell-attached patches from HEK293 cells transfected with TRPA1.  Representative current trace and open 
probability histogram.  An arrowhead represents the closed state.  Bin width for the histograms is 5 sec.  
(b) TRPA1 channels show a characteristic time course in [Ca2+]i and electrophysiological measurements.  
Averaged time courses of [Ca2+]i changes and the corresponding raw data in TRPA1-expressing HEK293 
cells (n = 25).  (c) Representative time courses of outward and inward whole cell currents recorded at +100 
and –100 mV, respectively, under ramp clamp in hyperoxic solution in HEK293T cells transfected with 
TRPA1.  Corresponding I-V relationships at the time points 1, 2 and 3 are also shown.  Expanded traces 
around the reversal potentials.  (d,e) Transient activation of hyperoxia-evoked whole cell currents by 2 
mM Ca2+ in HEK293T cells transfected with TRPA1.  Representative time courses of outward and inward 
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Supplementary Figure 5.  Effects of Cys mutations on TRPA1 activation.  (a,b) Relative Ca2+ 
responses of each of TRPA1 Cys mutants to hyperoxia (a) (n = 17–109) and 10 μM diallyl disulfide  (b) 
(n = 16–44), which has a redox potential comparable to O2, in HEK293 cells.  (c) Relative Ca2+ responses 
to 100 μM 2-APB of TRPA1 Cys mutants, which showed impaired response to hyperoxia, in HEK293 
cells (n = 20–67).  (d) The relationships between PO2 and Δ[Ca2+]i mediated by WT TRPA1, C633S, 
C856S or C633S·C856S in HEK293 cells (n = 17–43).  (e) Plots of Δ[Ca2+]i induced by 10 μM reactive 
disulfides (see Figure 1a) and hyperoxia in HEK293 cells transfected with TRPA1 constructs against 
redox potentials of respective substances (n = 15–42).  The order of redox potential of these compounds is 
dipropyl disulfide < diallyl disulfide < O2 < 4-aminophenyl disulfide < 4-methoxyphenyl disulfide < 
2-pyridyl disulfide < phenyl disulfide < 4-tolyl disulfide < 4-chlorophenyl disulfide < 3-nitrophenyl 
disulfide < 4-nitrophenyl disulfide < 5-nitro-2-PDS.  (f–h) Dose-response relationships of 4-tolyl 
disulfide- (f) (n = 17–42), 4-nitrophenyl disulfide- (g) (n = 21–42) and 5-nitro-2-PDS-induced Δ[Ca2+]i 
(h) (n = 23–45) in HEK293 cells transfected with TRPA1 constructs .  *P < 0.05, **P < 0.01 and ***P < 
0.001 compared to WT.  Data points are mean ± s.e.m..  
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Supplementary Figure 6.  DTNB activates TRPA1 only in the presence of F-127.  (a) TRPA1 
responses evoked by 10 M DTNB in the presence or absence of 0.04% F-127 in HEK293 cells.  Ten-min 
prior to DTNB treatment and continuing during the treatment, cells are incubated with or without F-127.  
Averaged time courses of [Ca2+]i changes and Δ[Ca2+]i (n = 15–24).  DTNB-2Bio fails to activate TRPA1 
even in the presence of F-127 (data not shown).  Redox potentials (E1/2 values) of DTNB and DTNB-2Bio 
are –1,327 mV and –1,172 mV, respectively.  ***P < 0.001.  (b) C633S, C856S and C633S·C856S show 
significantly suppressed responses to DTNB in the presence of F-127.  Averaged time courses of [Ca2+]i 
changes and Δ[Ca2+]i in HEK293 cells transfected by TRPA1 (n = 17–37).  **P < 0.01 and ***P < 0.001 
compared to WT.  (c) Full gels and blots of Figure 2i.  Data points are mean ± s.e.m..
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Supplementary Figure 7.  Requirement of cysteine oxidation of all four subunits of a TRPA1 
channel complex for activation.  (a) Hyperoxia-evoked current responses in HEK293T cells transfected 
with WT TRPA1 (1 μg) and vector (1 μg), WT TRPA1 (1 μg) and C633S·C856S (1 μg) or  vector (1 μg) 
and C633S·C856S (1 μg).  Peak current densities at –100 mV in hyperoxic conditions (n = 5–9).  *P < 
0.05 and ***P < 0.001.  (b) Ca2+ responses evoked by 100 μM 2-APB in HEK293T cells transfected with 
WT TRPA1 (1 μg) and vector (1 μg), C633S·C856S (1 μg) and vector (1 μg), WT TRPA1 (1 μg) and 
C633S·C856S (1 μg) or vector (2 μg).  Averaged time courses and Δ[Ca2+]i (n = 24–42).  *P < 0.05 and 
***P < 0.001 compared to HEK293T cells transfected with WT TRPA1 and vector.  Data points are mean 
± s.e.m..  (c) Coimmunoprecipitation of GFP-TRPA1 and GFP-C633S·C856S with TRPA1-Flag.  
Immunoprecipitates (IP) with antibody to Flag are subjected to WB with antibody to GFP.  
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Supplementary Figure 8.  Effects of glutathione on TRPA1 Cys mutants.  (a)  Short-term exposure of 
hyperoxic solution leads to S-glutathionylation of TRPA1.  Detection of S-glutathionylation in 
GFP-TRPA1 or GFP-C633S·C856S channel protein.  IP with antibody to glutathione are subjected to WB 
with antibody to GFP.  (b) Hyperoxia-evoked current responses (ΔI) of TRPA1 Cys mutants in HEK293T 
cells.  Two mM reduced glutathione are internally perfused from the patch pipette.  The basal density of 
whole cell inward currents in normoxia is subtracted from that recorded after treatment with hyperoxic 
solution at –100 mV (n = 5–7).  *P < 0.05 compared to WT.  Data points are mean ± s.e.m..  
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Supplementary Figure 9.  TRPA1 channels are activated by hypoxia in the intact cellular 
configuration but not in cell-excised membrane patches.  (a) TRPA1 responses evoked by hyperoxia 
and hypoxia in bicarbonate/CO2 buffered solution in HEK293 cells.  The relationship between PO2 and Δ
[Ca2+]i in TRPA1-expressing HEK293 cells (n = 21–37).  (b) TRPA1 is activated by changes in PO2 from 
18% (137 mmHg) to 20% (152 mmHg).  Averaged time courses and Δ[Ca2+]i in TRPA1-expressing 
HEK293 cells (n = 21–32).  ***P < 0.001.  (c) Suppression of hypoxia-induced Ca2+ responses via TRPA1 
by 10 μM AP-18.  Averaged time courses and percentage suppression of [Ca2+]i rises at 1,800 sec relative 
to Δ[Ca2+]i up to 1,200 sec in TRPA1-expressing HEK293 cells (n = 18–26).  ***P < 0.001 compared to 
cells treated with normoxic solution.  (d) Averaged time courses and [Ca2+]i induced by hypoxia (n = 
11–28)  in Ca2+-free, 0.5 mM EGTA- or 2 mM Ca2+-containing solution for HEK293 cells transfected with 
TRPA1 or vector.  ***P < 0.001.  (e) Suppression of hypoxia-evoked whole cell currents by 10 μM AP-18 
in TRPA1-expressing HEK293T cells.  Representative time courses of outward and inward currents under 
ramp clamp.  Corresponding I-V relationships at the time points 1–3.  (f) Suppression of hypoxia-activated 
TRPA1 currents by AP-18 at –100 mV (n = 10).  Percentage suppression of the suppressed current (2–3) at 
3-min after the peak relative to the induced current at the peak (2–1). ***P < 0.001 compared to cells 
maintained in hypoxia without AP-18.  (g) Single channel activities in the hypoxic solution at –60 mV in 
inside-out patches excised from HEK293T cells transfected with TRPA1 or vector.  Time-expanded 
current traces before (trace 1) and during (trace 2) application are also shown in the bottom panels.  
Arrowheads represent the closed state.  (h) Averages of NPO representing single TRPA1 channel activity in 
normoxia (n = 35) and hypoxia (n = 14).   Data points are mean ± s.e.m.. 
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Supplementary Figure 10.  Pro394 in TRPA1 is susceptible to hydroxylation by PHDs.  (a,b) Mass 
spectrometry analysis of TRPA1 peptides incubated with purified recombinant PHD2.  Spectra of the 
mutant TRPA1(386–405)P394A (a) and TRPA1(983–1002) peptides (b) are unaffected by PHD2.  The 
p e p t i d e  s e q u e n c e s  o f  T R P A 1 ( 3 8 6 – 4 0 5 ) P 3 9 4 A  a n d  T R P A 1 ( 9 8 3 – 1 0 0 2 )  a r e  
PYGLKNLRAEFMQMQQIKEL and HTSLEKKLPLWFLRKVDQKS, respectively.  (c) TRPA1
(hydroxylated Pro394)-specific antibody selectively recognizes hydroxylated Pro394 of TRPA1 protein.  
The polyvinylidene fluoride membrane is dotted with 10 ng, 100 ng and 1,000 ng of hydroxylated Pro394 
peptide (LKNLRP(OH)EFMQ) (top) and with 10 ng, 100 ng and 1,000 ng of unhydroxylated Pro394 
peptide (LKNLRPEFMQ) (bottom).  The membrane is subjected to dot-blot with antibody to TRPA1
(hydroxylated Pro394).  (d,e) Full gels and blots of Figure 4c,d.  
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Supplementary Figure 11.  Interaction between native PHD2 and TRPA1 protein.  (a) Protein 
expression of TRPA1 (calculated molecular weight, 128.5 kDa) is disrupted in DRG from Trpa1 KO mice.  
WB is performed using anti-TRPA1 antibody.  (b) Long exposure for full gels and blots of Figure 4e.
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Supplementary Figure 12.  DMOG activates TRPA1 channel.  (a,b) Representative time courses of 300 
μM DMOG-evoked outward and inward currents under ramp clamp in HEK293T cells transfected with 
TRPA1 (a) or vector (b).  Corresponding I-V relationships at the time points 1 and 2, and those of evoked 
currents (2–1) are also shown.  (c) Peak current densities at –100 mV during the treatment with DMOG or 
its vehicle (0.01% DMSO) (n = 7–21).  ***P < 0.001.  Data points are mean ± s.e.m..  
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Supplementary Figure 13.  Overexpression of PHD2 suppresses the response of TRPA1 to mild 
hypoxia.  (a) Ca2+ responses to mild hypoxia in TRPA1-expressing HEK293 cells cotransfected with 
vector or PHD2.  Averaged time courses and Δ[Ca2+]i (n = 32–42).  Dissolved PO2 measured in mild 
hypoxic solution is 111 mmHg (14% O2).  ***P < 0.001.  (b) Percentage increment of whole cell currents 
in mild hypoxia at –100 mV in TRPA1-expressing HEK293 cells cotransfected with vector or PHD2 (n = 
5–24).  ***P < 0.001.  Data points are mean ± s.e.m..  
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Supplementary Figure 14.  TRPA1 responses to hypoxia and DMOG are suppresssed by 
overexpression of PHD mutants.  (a) Overexpression of exogenous catalytically dead mutants for 
PHD1–3 (PHD1-Mut, PHD2-Mut or PHD3-Mut) compared to endogenous PHD1–3 in TRPA1-expressing 
HEK293 cells cotransfected with vector or PHD1–3 Mut.  WB with antibody to PHD1, PHD2 or PHD3 
(Novus Biologicals).  An anti-α-tubulin antibody (SIGMA) is used as a loading control.  (b) 
Coimmunoprecipitation of GFP-TRPA1 with PHD1–3 and PHD1–3 Mut.  IP with antibody to Flag are 
subjected to WB with antibody to GFP.  (c,d) TRPA1 responses to hypoxia (c) and 300 μM DMOG (d) are 
suppressed by overexpression of PHD mutants.  Averaged time courses in TRPA1-expressing HEK293 
cells cotransfected with PHD mutants (n = 13–50).  Basal [Ca2+]i levels and average [Ca2+]i rises are 
shown in Figure 5e,f.  (e,f) AITC and hyperoxia activate TRPA1 in TRPA1-expressing HEK293 cells 
cotransfected with PHD1-Mut, PHD2-Mut and PHD3-Mut.  TRPA1 responses evoked by 100 μM AITC 
(e) (n = 15–25) and hyperoxia (f) (n = 16–29) .  Averaged time courses and average [Ca2+]i rises at 
1,080–1,200 sec.  ***P < 0.001 compared to cotransfection of TRPA1 with vector.  Data points are mean ± 
s.e.m..  
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Supplementary Figure 15.  TRPA1 responses evoked by hypoxia are suppressed by PHD-specific 
siRNAs in HEK293 cells.  (a) RT-PCR analysis of PHD1, PHD2 and PHD3 RNA expression in HEK293 
cells treated with PHD1-specific siRNA (siPHD1), PHD2-specific siRNA (siPHD2), PHD3-specific 
siRNA (siPHD3), a combination of PHD1-, PHD2- and PHD3-specific siRNAs (siPHD1&2&3) and 
GAPDH siRNA (siControl).  -actin is used as an internal control.  (b) TRPA1 responses evoked by 
hypoxia in HEK293 cells treated with siControl or siPHD1&2&3.  Averaged time courses (n = 80–147).  
Basal [Ca2+]i levels and average [Ca2+]i rises are shown in Figure 5g.  (c) TRPA1 responses evoked by 
hyperoxia in HEK293 cells treated with siControl or siPHD1&2&3.  Averaged time courses and Δ[Ca2+]i 
(n = 26–40).  Data points are mean ± s.e.m..  
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Supplementary Figure 16.  P394A mutation greatly enhances spontaneous activation of TRPA1.  
(a) Ca2+ responses of TRPA1 constructs to 300 μM DMOG.  Averaged time courses, basal [Ca2+]i levels 
and average [Ca2+]i rises at 1,080–1,200 sec in HEK293 cells transfected with TRPA1 costructs (n = 
15–21).  ***P < 0.001 compared to WT.  (b,c) TRPA1 responses evoked by 100 μM AITC (b) (n = 
18–24) and hyperoxic solution (c) are unaffected by P394A mutation (n = 16–20).  Averaged time 
courses and average [Ca2+]i rises at 1,080–1,200 sec in HEK293 cells transfected with TRPA1 constructs.  
***P < 0.001 compared to WT.  Data points are mean ± s.e.m..    
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Supplementary Figure 17.  O2 action overrides the PHD-mediated inhibition.  (a–c) Representative 
time courses of whole cell currents in hyperoxia (a,b) or normoxia (c) in TRPA1-expressing HEK293T 
cells in the absence (a) or presence of purified recombinant PHD2 (b,c) internally perfused from the patch 
pipette.  Corresponding I-V relationships at the time points 1 and 2, and those of evoked currents (2–1) are 
also shown.  (d) Peak current densities at –100 mV in the presence or absence of PHD2 in hyperoxia or 
normoxia (n = 5–8). *P < 0.05.   (e,f) Effects of hyperoxia or hypoxia on channel open state.  In (e), single 
channel currents of TRPA1 WT or P394A mutant in normoxia, hyperoxia and hypoxia are recorded at Vh 
of 60 mV in cell-attached patch are shown.  In (f), dwell-time histograms of open times in normoxia, 
hyperoxia and hypoxia are shown.  Distributions are best fitted with multiple-exponential functions 
consisting of one to three exponential components with time constant (τ1, τ2 and τ3).  (g) Hyperoxia 
activates TRPA1 even in the presence of DMOG.  After incubation with 300 M DMOG for 19 min, cells 
are treated with or without hyperoxic solution.  Averaged time courses of [Ca2+]i changes and Δ[Ca2+]i at 
1,200–1,800 sec in TRPA1-expressing HEK293 cells (n = 22–33).  ***P < 0.001.   Data points are mean ± 
s.e.m..  
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Supplementary Figure 18.  Cell surface expression of TRPA1 is enhanced by hypoxia.  (a) Confocal fluorescent  images 
of HEK293 cells cotransfected with GFP-TRPA1 and the plasmamembrane marker DsRed-monomer-F.  Nuclei are stained 
with Hoechst 33342.  Arrows indicate colocalization of TRPA1 with DsRed-monomer-F on the plasmamembrane.  The bar 
indicates 10 m.  (b) Cell surface expression of TRPA1 is enhanced by hypoxia.  Averaged time courses of surface 
fluorescence changes (F/F0) obtained by TIRF images are shown (n = 12–20).  Average ΔF/F0 is shown in Figure 5j.  (c–g) 
Effects of 0.1% DMSO (c), 5 g ml1 CPZ (d), 100 M brefeldin A (d), 80 M dynasore (e), 300 M DMOG (f) and 1 g 
ml1 filipin (g) on surface fluorescence signal of GFP-TRPA1 in HEK293 cells.  In (c)–(e) and (g), after incubation with 
DMSO (c), CPZ (d), brefeldin A (d), dynasore (e) or filipin (g) for 3 min, cells are treated with or without hypoxic solution.  
Averaged time courses of F/F0 (c–g) and average ΔF/F0 at 250–300 sec (c,e,g) and 800–900 sec (c,e–g) are shown (n = 
12–18).  In (d), average ΔF/F0 is shown in Figure 5k.  **P < 0.01 and ***P < 0.001.  (h,i) Cell surface expression of 
GFP-TRPA1.  GFP-TRPA1-expressing HEK293 cells are preincubated with 200 μM brefeldin A (h) or 5 μg ml1 CPZ (i) for 
3–4 h, and then incubated with hypoxic solution for 5 min.  The cell lysate prepared after exposure to sulfo-NHS-SS-biotin is 
incubated with streptavidin-agarose, and the obtained proteins are analyzed by WB with anti-GFP antibody.  (j) Brefeldin A 
inhibits hypoxia-induced TRPA1 responses.  Three hour prior to the treatment with hypoxic solution and continuing during 
the treatment, cells are incubated with 100 M brefeldin A.  Averaged time courses are shown (n = 27–28).  Δ[Ca2+]i is 
shown in Figure 5l.  (k–m) TRPA1 responses evoked by 1 g ml1 CPZ (k), 1 M dynasore (l), 1 g ml1 filipin (m) or their 
vehicle (0.1% DMSO) (k–m) in HEK293 cells.  After incubation with CPZ (k), dynasore (l) or filipin (m) for 7 min, cells are 
treated with or without hypoxic solution.  Averaged time courses of [Ca2+]i changes (k–m) and Δ[Ca2+]i at 60–480 sec and 
480–900 sec (l,m) (n = 17–42) are shown.  In (k), Δ[Ca2+]i is shown in Figure 5m.  *P < 0.05, **P < 0.01 and ***P < 0.001.  
Data points are mean ± s.e.m..
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Supplementary Figure 19.  Pharmacological characterization of hypoxia-activated TRPA1 
responses.  (a) TRPA1 responses evoked by the 19-min treatment with hypoxic solution are sustained 
after switching the condition to normoxia alone or in combination with vehicle for AP-18 (0.01% 
DMSO) or 300 M L-NAME but are suppressed after switching the condition to normoxia in 
combination with 1 mM NAC, 1 mM DTT or 10 M AP-18 in HEK293 cells.  Averaged time courses 
and percentage suppression of [Ca2+]i rises at 1,800 sec relative to Δ[Ca2+]i up to 1,200 sec (n = 12–20).  
*P < 0.05 and ***P < 0.001 compared to cells treated with normoxic solution.  (b) TRPA1 responses 
evoked by the 5-min treatment with hypoxic solution are suppressed after switching the condition to 
normoxia alone or in combination with 1 mM NAC, 1 mM DTT or 300 M L-NAME in HEK293 cells.  
Averaged time courses and percentage suppression of [Ca2+]i rises at 900 sec relative to Δ[Ca2+]i up to 
360 sec (n = 25–29).  ***P < 0.001 compared to cells treated with normoxic solution.  (c) TRPA1 
responses evoked by the 19-min treatment with mild hypoxic solution are suppressed by normoxic 
solution in HEK293 cells.  Averaged time courses and percentage suppression of [Ca2+]i rises at 1,800 
sec relative to Δ[Ca2+]i up to 1,200 sec (n = 15–27).  Dissolved PO2 measured in mild hypoxic solution is 
111 mmHg (14% O2).  ***P < 0.001.  (d) TRPA1 responses evoked by the 19-min treatment with 300 M 
DMOG are suppressed by wash out (DMOG(–)) in HEK293 cells.  Averaged time courses and 
percentage suppression of [Ca2+]i rises at 1,800 sec relative to Δ[Ca2+]i up to 1,200 sec(n = 19–25).  ***P 
< 0.001.  Data points are mean ± s.e.m..    
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Supplementary Figure 20.  Relationship of hydroxylation-dependent regulatory mechanism with 
PLC-coupled receptor mediated mechanism in TRPA1 activation.  (a,b) Effect of edelfosine (ET), a 
PLC inhibitor, on TRPA1 responses evoked by hypoxia (a) and hyperoxia (b) in HEK293 cells.  
Five-min prior to the treatment with hypoxic (a) or hyperoxic (b) solution and continuing during the 
treatment, cells are incubated with 1 M ET or its vehicle (0.1% ethanol).  Averaged time courses and Δ
[Ca2+]i (n = 16–31).  ***P < 0.001 compared to TRPA1 without ET.  (c) Effect of mild hypoxia on 
TRPA1 responses evoked by bradykinin in bradykinin receptor 2 (B2R)-expressing HEK293 cells.  
Averaged time courses of [Ca2+]i changes evoked by 10 M bradykinin and dose-response relationships 
of Δ[Ca2+]i at 60–300 sec or 780–900 sec (n = 19–42).  Dissolved PO2 measured in mild hypoxic solution 
is 111 mmHg (14% O2). **P < 0.01 and ***P < 0.001 compared to TRPA1 (mild hypoxia(–)).  (d) TRPA1 
responses to bradykinin are unaffected by P394A mutation.  TRPA1 responses evoked by 10 M 
bradykinin in the presence or absence of 1 M ET in B2R-expressing HEK293 cells transfected with 
TRPA1 constructs.  Five-min prior to bradykinin treatment and continuing during the treatment, cells are 
incubated with 1 M ET or its vehicle (0.1% ethanol).  Averaged time courses of [Ca2+]i changes and Δ
[Ca2+]i at 60–300 sec or 780–900 sec (n = 29–39).  *P < 0.05 and ***P < 0.001.  Data points are mean ± 
s.e.m..
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Supplementary Figure 21.  TRPA1 mediates hyperoxia- and hypoxia-induced Ca2+ responses and ionic currents 
in mouse nodose ganglion neurons.  (a) Expression of TRPA1 proteins in a subset of nodose ganglion neurons 
innervating the airway and the lung.  Confocal images of immunostaining with TRPA1-specific antibody (green).  
Retrograde labeling of nodose ganglion neurons projecting to airway or lung with DiI (red) is attained by its instillation 
into the airway lumen or by transdermal injection into the lung, respectively.  The bar indicates 20 μm.  (b) RNA 
expression of PHD1–3 detected by RT-PCR in mouse nodose ganglion neurons.  (c,d) Suppression of hyperoxia- (c) and 
hypoxia-induced Ca2+ responses (d) by AP-18 in WT nodose ganglion neurons.  Representative Ca2+ responses evoked 
in hyperoxic (c) or hypoxic (d) solution and by application of 10 M AP-18, vehicle for AP-18 (0.01% DMSO), 3 M 
capsaicin and 60 mM KCl and percentage suppression of [Ca2+]i rises at 2,280 sec (c) and 1,500 sec (d) relative to Δ
[Ca2+]i up to 1,800 sec (c) and 900 sec (d) in hyperoxia- (c) and hypoxia-responding neurons (d), respectively (n = 
6–11).  *P < 0.05 and **P < 0.01.  (e,f) Hyperoxia- (e) and hypoxia-induced Ca2+ responses (f) are ablated in Trpa1 KO 
nodose ganglion neurons.  Representative Ca2+ responses evoked in bicarbonate/CO2 buffer bubbled with hyperoxic (e) 
(n = 15–20) or hypoxic gas (f) (n = 14–38) and [Ca2+]i at 60–1,500 sec (e) or 60–900 sec (f) in capsaicin-sensitive 
neurons.  *P < 0.05 and ***P < 0.001.  (g,h) Suppression of hyperoxia- (g) (n = 6–7) and hypoxia-evoked whole cell 
currents (h) (n = 5–7) by 10 M AP-18 in WT nodose ganglion neurons.  Representative time courses of outward and 
inward currents under ramp clamp in hyperoxic (g) or hypoxic (h) solution.  Corresponding I-V relationships at the time 
points 1–3.  Percentage suppression of the suppressed current (2–3) at 3-min after the peak relative to the induced 
current at the peak (2–1). ***P < 0.001.  (i,j) [Ca2+]i rises evoked by hypoxia (10, 13 or 15% O2) in capsaicin-sensitive (i) 
or all nodose ganglion neurons (j) (n = 25–192).  Dissolved PO2 measured in the hypoxic solutions are 79 mmHg (10% 
O2), 103 mmHg (13% O2) and 119 mmHg (15% O2).  **P < 0.01 and ***P < 0.001.  Data points are mean ± s.e.m..    
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Supplementary Figure 22.  Hyperoxia and hypoxia evoke TRPA1 responses in mouse DRG neurons.  (a,b) 
Suppression of hyperoxia- (a) and hypoxia-induced Ca2+ responses (b) by AP-18 in WT DRG neurons.  
Representative Ca2+ responses evoked in hyperoxic or hypoxic solution and by application of 10 M AP-18, 
vehicle for AP-18 (0.01% DMSO), 3 M capsaicin and 60 mM KCl and percentage suppression of [Ca2+]i rises 
at 1,980 sec (a) and 1,500 sec (b) relative to Δ[Ca2+]i up to 1,500 sec (a) and 900 sec (b) in neurons responding 
to hyperoxia (a) and hypoxia (b), respectively (n = 11–35).  **P < 0.01 and ***P < 0.001.  (c,d) Ca2+ influx is 
responsible for [Ca2+]i elevation by hyperoxia and hypoxia in mouse DRG neurons.  Representative Ca2+ 
response and [Ca2+]i induced by hyperoxia (c) (n = 31) or hypoxia (d) (n = 35) in Ca2+-free, 0.5 mM EGTA- or 
2 mM Ca2+-containing solution are shown for capsaicin-sensitive neurons DRG neurons.  ***P < 0.001.  (e,f) 
Ablated Ca2+ responses to hyperoxia (e) and hypoxia (f) in capsaicin-sensitive Trpa1 KO DRG neurons.  
Representative Ca2+ responses are shown.  [Ca2+]i is shown in Figure 6i.  (g,h) Ablated Ca2+ responses to 
hyperoxia (g) and hypoxia (h) in capsaicin-sensitive Trpa1 KO DRG neurons.  Representative Ca2+ responses 
evoked in bicarbonate/CO2 buffer bubbled with hyperoxic (g) (n = 23–25) or hypoxic gas (h) (n = 13–47) and 
hyperoxia- (g) or hypoxia-induced [Ca2+]i (h).  *P < 0.05 and ***P < 0.001.  (i) TRPA1 is activated by changes 
in PO2 from 18% (137 mmHg) to 20% (152 mmHg).  Averaged time courses and [Ca2+]i in DRG neurons 
isolated from WT or Trpa1 KO mice (n = 46–49).  *P < 0.05.  Data points are mean ± s.e.m..  
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Supplementary Figure 23.  PHD-mediated inhibition of TRPA1 channels.  (a) Semi-quantitative 
RT-PCR analysis of PHD1, PHD2 and PHD3 RNA expression in mouse DRG and nodose ganglion (NG) 
neurons.  Plasmids carrying PHD1, PHD2 or PHD3 cDNA are used as control.  (b) Detection of 
hydroxylated Pro394 of TRPA1 in mouse DRG neurons.  Confocal images of immunostaining with 
TRPA1-specific antibody (green) and TRPA1(hydroxylated Pro394)-specific antibody (red).  The bar 
indicates 10 m.  (c) RT-PCR analysis of PHD1, PHD2 and PHD3 RNA expression in mouse DRG 
neurons treated with PHD1-specific siRNA (siPHD1), PHD2-specific siRNA (siPHD2), PHD3-specific 
siRNA (siPHD3), a combination of PHD1-, PHD2- and PHD3-specific siRNAs (siPHD1&2&3) and 
non-targeting siRNA (siControl).  β-actin is used as an internal control.  (d) Ca2+ responses to hypoxia in 
DRG neurons treated with siControl or siPHD1&2&3.  Representative Ca2+ responses evoked in hypoxic 
solution and by application of 10 M AP-18, 3 M capsaicin and 60 mM KCl in capsaicin-sensitive 
neurons.  Basal [Ca2+]i levels and average [Ca2+]i rises are shown in Figure 6j.  (e,f) Ca2+ responses to 
hypoxia (e) or hyperoxia (f) in Phd1 or Phd3 KO DRG neurons.  In (e), representative Ca2+ responses 
evoked in hypoxic solution are shown.   Basal [Ca2+]i levels and [Ca2+]i rises are shown in Figure 6k.  In 
(f), representative Ca2+ responses evoked in hyperoxic solution are shown.  [Ca2+]i is measured at 
60–1,500 sec in capsaicin-sensitive neurons (n = 22–59).  Data points are mean ± s.e.m..
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Supplementary Figure 24.  Defects of vagal afferent discharges under systemic hypoxia and 
hyperoxia in Trpa1 KO mice.  Responses of vagal afferent discharges to inhalation of hypoxic gas (10% 
O2 for (a), 13% O2 for (b) or 15% O2 for (c)) or hyperoxic (100% O2 for (d)) in Trpa1 KO mice.  
Representative tracings of vagal afferent discharges.  Right panels show rectified and integrated vagal 
afferent activities.  Comparison of percentage changes in rectified and integrated vagal nerve activity in 
response to inhalation of hypoxic or hyperoxic gas between WT and Trpa1 KO mice is shown in Figure 7.
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Supplementary Figure 25.  Defects of superior laryngeal afferent discharges under systemic hypoxia 
and hyperoxia in Trpa1 KO mice.  (a–d) Responses of superior laryngeal afferent discharges to 
inhalation of hypoxic gas (10% O2 for (a), 13% O2 for (b) or 15% O2 for (c)) or hyperoxic (100% O2 for 
(d)) in Trpa1 KO mice.  Representative tracings of superior laryngeal afferent discharges.  Right panels 
show rectified and integrated superior laryngeal afferent activities.  (e,f) Comparison of percentage 
changes in rectified and integrated superior laryngeal nerve activity in response to inhalation of hypoxic 
(10, 13 and 15% O2) or hyperoxic (100% O2) gas between WT and Trpa1 KO mice in the sustained phase 
(20–30 sec) (e) or in the rising phase 5–20 sec (f)  (n = 4–7).  Values denote percentage changes from basal 
activities recorded during normoxic gas (20% O2) exposure.  *P < 0.05 and **P < 0.01 compared to WT.  
Data points are mean ± s.e.m.. 
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WT Normoxia Hyperoxia Hypoxia  

 

1 1.39 ± 0.15 1.55 ± 0.18 1.47 ± 0.21 

2 5.27 ± 0.42 8.88 ± 1.08 6.85 ± 0.56 

3 48.15 ± 14.08

 

A1 0.95 ± 0.02 0.83 ± 0.02 0.72 ± 0.04 

A2 0.05 ± 0.02 0.15 ± 0.02 0.28 ± 0.04 

A3 0.02 ± 0.01 

P394A Normoxia Hyperoxia Hypoxia  

 

1 1.16 ± 0.16 2.76 ± 0.15 1.51 ± 0.44 

2 6.09 ± 0.51 15.84 ± 2.12 6.38 ± 1.53 

3 60.74 ± 13.41

 

A1 0.73 ± 0.02 0.80 ± 0.04 0.77 ± 0.02 

A2 0.26 ± 0.02 0.14 ± 0.03 0.22 ± 0.02 

A3  0.05 ± 0.01  

Time constants (ms)

Relative weights

Time constants (ms)

Relative weights

Supplementary Table 1.  Time constants and relative weights of 
single channel current measured from cell-attached patches at a 
holding potential of 60 mV.  Open times and their corresponding 
relative weights for TRPA1 (WT) or P394A mediated currents evoked 
by hyperoxia and hypoxia.  τ1, τ2 and τ3 are time constants and A1, A2 
and A3 are relative weights under the respective time constant.  *P < 
0.05, **P < 0.01 and ***P < 0.001 compared to cells maintained in 
normoxa .  Data are mean ± s.e.m..
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** ***
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Capsaicin-responding cells;

WT

Hyperoxia-responding cells;

WT

Trpa1 KO

Hyperoxia- and capsaicin- 
responding cells;

WT

Hypoxia-responding cells;

WT

Hypoxia- and capsaicin- 
responding cells;

WT

Trpa1 KO

Trpa1 KO

Trpa1 KO

Trpa1 KO

Supplementary Table 2.  Hyperoxia and hypoxia responses in 
nodose ganglion or DRG neurons.  The percentages of hyperoxia- 
and hypoxia-responding neurons are shown.  Neurons exposed to 
hyperoxic or hypoxic solution are treated sequentially with 10 μM 
AP-18 or 0.01% DMSO, 3 μM capsaicin and 60 mM KCl during 
periods indicated in Figure 6a,b and Supplementary Figure 21c,d for 
nodose ganglion and Supplementary Figure 22a,b,e,f for DRG 
neurons. 

Nodose ganglion

48.5% (81/167)

45.5% (102/224)

28.6% (8/28)

4.84% (3/62)

25.0% (7/28)

0.02% (1/62)

12.2% (17/139)

3.09% (5/162)

12.2% (17/139)

0.00% (0/162)

DRG

41.3% (102/247)

39.1% (61/156)

40.0% (32/80)

12.1% (4/33)

25.0% (20/80)

0.03% (1/33)

21.6% (36/167)

7.31% (9/123)

10.8% (18/167)

0.81% (1/123)
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Supplementary Table 3.  Primer sequences used for overlap extension PCR in producing mutants.

Mutants Mutation primer sequences (5’ 3’) External primer sequences (5’ 3’)

Restriction sites used for
cloning into TRPA1-pCIneo,
PHD1-pCIneo, PHD2-pCIneo
 or PHD3-pCIneo

for: CTGCAGTGACTCTCTTAAGGTAGCCTTG

rev: CTGTCTACATGCATAATGTAGAGGAGTACAC

C3S
for: CTTCCACCATGAAGAGCAGCCTGAGGAAG

rev: CATCTTCCTCAGGCTGCTCTTCATGGTG

C59S
for: GAAATTAAAAACAAGTGACGATATGGAC

rev: GTCCATATCGTCACTTGTTTTTAATTTC

C104S
for: GGAAATACCCCTCTGCATAGTGCTGTAG

rev: CTACAGCACTATGCAGAGGGGTATTTCC

C173S
for: GATCATTGCGAGCACCACAAATAATAG

rev: TATTTGTGGTGCTCGCAATGATCACAG

for: GGAGCTAAGCCAAGTAAATCAAATAAATG

rev: CATTTATTTGATTTACTTGGCTTAGCTCC
C192S

C199S
for: GGAAGTTTCCCTATTCACCAAGCTGC

rev: GCAGCTTGGTGAATAGGGAAACTTCC

C213S
for: GGTTCCAAAGAAAGCATGGAAATAATAC

rev: GTATTATTTCCATGCTTTCTTTGGAACC

C258S
for: GATCAAAATGAGCCTGGACAATGGTG

rev: GTGCACCATTGTCCAGGCTCATTTTG

C273S
for: GAAGGGAAGGAGCACAGCCATTCATTTTG

rev: AATGAATGGCTGTGCTCCTTCCCTTCTC

C308S
for: CAACCGATGGAAGTCATGAGACCATGC

rev: GCATGGTCTCATGACTTCCATCGGTTG

XhoI / NheI

C462S
for: GTATCAATACCAGTCAGAGGCTCCTACAAG

rev: CTTGTAGGAGCCTCTGACTGGTATTGATACG

for: ACCGATGGATGTCATGAGACCATGCTTC

rev: GCAATGTCGCCAACTGCCAAACCAATAAG

C608S
for: GATGGGATGAAAGTCTTAAGATTTTCAGTC

rev: GACTGAAAATCTTAAGACTTTCATCCCATC

C633S
for: CTCCCTGAAAGCATGAAGGTACTTTTAG

rev: GTACCTTCATGCTTTCAGGGAGGTATTC

C651S
for: GACAAGTCCAGCCGAGACTATTATATC

rev: GATATAATAGTCTCGGCTGGACTTGTCTTC

C703S
for: CTGTGAGTAAAGAATATTTACTCATGAAATGG

rev: CCATTTCATGAGTAAATATTCTTTACTCACAG

C727S
for: GATGAATTTAGGATCTTACAGTCTTGGTCTC

rev: AAGACTGTAAGATCCTAAATTCATCATATGAG

C773S
for: CCACGAATTCATATCTAATAAAAACTAGTATG

rev: CATACTAGTTTTTATTAGATATGAATTCGTGG

C786S
for: GTATATTTGGGTATAGCAAAGAAGCGGG

rev: CCCGCTTCTTTGCTATACCCAAATATAC

C834S
for: GTGGCAAAGTGGAGCAATTGCTGTTTAC

rev: GTAAACAGCAATTGCTCCACTTTGCCAC

C856S
for: CAAAGATTTGAAAATAGTGGAATTTTTATTG

rev: ATTCCACTATTTTCAAATCTTTGAAGATAC

ApaI / BamHI

C1021S
for: CCATATATTCAGTTTTTTATTTTGCACTGG

rev: CCAGTGCAAAATAAAAAACTGAATATATGG

for: CTCAGCTTTTACATCCTCCTGAATTTAC

rev: CCTTATCGGATTTTACCACATTTGTAGAG
C1025S

for: CTGTTTTTTATTTAGCACTGGGGAAATAAG

rev: CTTATTTCCCCAGTGCTAAATAAAAAACAG

C1085S
for: GATGATGATAGCCATAGTTCTTTTCAAGAC

rev: GTCTTGAAAAGAACTATGGCTATCATCATC

BamHI / XmaI

for: ACTCACTATAGGCTAGCCTCGAGAATTCGGG

rev: CTTGTAGGAGCCTCTGACAGGTATTGATACG
P394A

for: TGCGAGCTGAATTTATGCAGATGCAACA

rev: TGTTGCATCTGCATAAATTCAGCTCGCA
XhoI / ApaI

Genes

TRPA1

TRPA1

TRPA1

TRPA1

for: CACGAATTCTCCACCATGGACAGCCCGTGCCAGCC

rev: CACGTCGACCTAGGTGGGCGTAGGCGGCTGTG
H357A

for: GAACCCCGCCGAGGTGAAGCCAGCCTATGC

rev: GCATAGGCTGGCTTCACCTCGGCGGGGTTC
PHD1 EcoRI / SalI

for: CACGAATTCTCCACCATGGCCAATGACAGCGGCG

rev: CACGTCGACCTAGAAGACGTCTTTACCGAC
H374A

for: TCGCAACCCTGCTGAAGTACAACCA

rev: TGGTTGTACTTCAGCAGGGTTGCGA
PHD2 EcoRI / SalI

for: CACGAATTCTCCACCATGCCCCTGGGACACATCAT

rev: CACGTCGACTCAGTCTTCAGTGAGGGCAG
H196A

for: CGTAGGAACCCAGCCGAAGTGCAG

rev: CTGCACTTCGGCTGGGTTCCTACG
PHD3 EcoRI / SalI

for: forward primer  rev: reverse primer
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Genes Primer sequences (5’ 3’)

PHD1
for: ACCGCGCAGCATTCGTG

rev: GGGGCTGGCCATTAGGTAGGTGTA

PHD2
for: GCGGGAAGCTGGGCAACTAC

rev: TCAACCCTCACACCTTTCTCACC

PHD3
for: CTGCGTGCTGGAGCGAGTCAA

rev: TCATGTGGATTCCTGCGGTCTG

Supplementary Table 4.  Primer sequences used in 
RT-PCR experiments.

Species

Mouse

Mouse

Mouse

-actin
for: GATGACGATATCGCTGCGCTG

rev: GTACGACCAGAGGCATACAGG
Mouse

PHD1
for: GGCGATCCCGCCGCGC

rev: CCTGGGTAACACGCCACC

PHD2
for: GCACGACACCGGGAAGTT

rev: CCAGCTTCCCGTTACAGT

PHD3
for: GGCCATCAGCTTCCTCCTG

rev: GGTGATGCAGCGACCATCA

Human

Human

Human

-actin
for: CATCCGCAAAGACCTGTACGCCAACAC

rev: CTCGTCATACTCCTGCTTGCTGATCCAC
Human

for: forward primer  rev: reverse primer
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