Article

https://doi.org/10.1038/s41589-022-01173-6

Ligand recognition and allosteric modulation of the human MRGPRX1 receptor

In the format provided by the authors and unedited

Ligand recognition and allosteric modulation of the human

MRGPRX1 receptor

Yongfeng Liu^{1,2,7}, Can Cao^{1,7}, Xi-Ping Huang^{1,2}, Ryan H. Gumpper¹, Moira M. Rachman³, Sheng-Luen Shih^{1,2}, Brian E. Krumm¹, Shicheng Zhang¹, Brian K. Shoichet³, Jonathan F. Fay^{4,5*} and Bryan L. Roth^{1,2,6*}

¹ Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA

² National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA

³ Department of Pharmaceutical Sciences, University of California San Francisco, School of Medicine, San Francisco, CA 94158, USA

⁴ Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA

⁵ Present address: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

⁶ Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA

⁷ These authors contributed equally: Yongfeng Liu, Can Cao

*Email: <u>ifay@som.umaryland.edu;</u> <u>bryan_roth@med.unc.edu</u>

Supplementary Figure 1. Purification of the MRGPRX1-Gq complex. a, Representative size exclusion chromatography elusion profile of the MRGPRX1-Gq complex. **b**, SDS-PAGE of samples of vitro reconstituted MRGPRX1-Gq complex. Full SDS-PAGE scans were shown at the end of supplementary information. Experiments were repeated three times with similar results.

Supplementary Figure 2. Cryo-EM data processing flowcharts of MRGPRX1-Gq complex bound to BAM8-22, BAM8-22/ML382 and compound-16. The number of micrographs, particles and 3D classification of MRGPRX1-Gq complex bound to BAM8-22, BAM8-22/ML382 and compound-16 have been shown.

Supplementary Figure 3. The interactions between ML382 and the Tyr17 of BAM8-22. The upper part of 2-ethoxyphenyl and cyclopropyl sulfonamide groups of ML382

and Tyr17 of BAM8-22 are shown as spheres to highlight the hydrophobic interactions.

Supplementary Figure 4. Dose-response curves of MRGPRX1 with graded concentrations of ML382 using BAM8-22 and compound-16 as orthosteric ligands. Calcium mobilization assay was performed to assess ML382 allosteric regulation of BAM8-22 (a) and compound-16 (b), respectively. The data were presented as mean ± SEM of n=3 biological replicates.

Supplementary Figure 5. Weak agonist activity of compound-16 with MRGPRX2 and MRGPRX4 receptors. Representative dose response curves for the MRGPRX2 and MRGPRX4 receptors in Tango assay (**a-b**) and BRET2 assay (**c-d**). Known agonists for MRGPRX2 (TAN-67 and cortistatin-14) and MRGPRX4 (nateglinide) were used as positive controls. The data were presented as mean ± SEM of n=3 biological replicates.

Supplementary Figure 6. Allosteric activity of ML382 with other MRGPRX **subtypes.** In presence of Graded concentrations of ML382, Gq dissociate BRET2 assay was performed to assess ML382 allosteric regulation of cortistatin-14 with MRGPRX2 (a) or nateglinide with MRGPRX4 (b), respectively. The data were presented as mean ± SEM of n=3 biological replicates.

Supplementary Figure 7. Validation of compound-16 pose. a, GlideEM docking result suggested compound-16 poses with the methoxybenzene group flipped are much more preferred in the current cryoEM map and MRGPRX1 model. **b,** The updated compound-16 pose could fit the ligand density well.

Supplementary Figure 8. Measurement of the cell surface expression level of WT and mutants of MRGPRX1 by ELISA. Data represent mean \pm SEM of n = 4 biological replicates.

Supplementary Table 1. G α q dissociation (BRET2) parameter estimates for MRGPRX1 pocket mutations. EC₅₀ and E_{max} represents the average and standard error of the mean (SEM) from three independent experiments performed in duplicate. E_{max} is defined as percent WT maximum response. N.D., no detected activity as equilibrium could not be achieved at maximum agonist concentration for a reliable curve fitting.

MRGPRX1	BAM8-22			Compound-16		
Constructs	pEC ₅₀ ±SEM	EC ₅₀ (μΜ)	<i>E</i> max ± SEM, % WT	$pEC_{50} \pm SEM$	EC ₅₀ (μΜ)	E _{max} ± SEM, % WT
WT	6.30 ± 0.04	0.50	100 ± 2	6.67 ± 0.07	0.21	100 ± 3
Y99A	5.14 ± 0.12	7.33	82 ± 9	N.D.	N.D.	<50
P100A	5.62 ± 0.07	2.38	119 ± 5	6.26 ± 0.06	0.54	100 ± 3
E157A	N.D.	N.D.	<50	N.D.	N.D.	<50
W158A	5.83 ± 0.05	1.49	101 ± 3	6.63 ± 0.07	0.23	101 ± 3
C161A	N.D.	N.D.	<50	N.D.	N.D.	<50
C173A	N.D.	N.D.	<50	N.D.	N.D.	<50
D177A	N.D.	N.D.	<50	N.D.	N.D.	<50
F236A	N.D.	N.D.	<50	N.D.	N.D.	N.D.
L240A	N.D.	N.D.	<50	6.11 ± 0.08	0.77	75 ± 3
W241A	N.D.	N.D.	<50	4.95 ± 0.24	11.1	66 ± 15
H243A	5.68 ± 0.07	0.61	98 ± 4	6.33 ± 0.07	0.46	96 ± 3
L249A	N.D.	N.D.	<50	5.10± 0.14	7.91	80 ± 9
F250A	N.D.	N.D.	<50	5.52 ± 0.12	2.99	70 ± 5
H254A	N.D.	N.D.	<50	5.92 ± 0.15	1.22	71 ± 6

Supplementary Table 2. Allosteric effect on WT and mutant MRGPRX1 using BRET2 dissociation assay. BRET dissociation assays were performed in the presence of increasing concentrations of BAM8-22 and ML382. Allosteric parameter (pK_B) obtained by fitting dose response curves to "Allosteric EC₅₀ shift" function of Graphpad Prism 9.0. Data are presented as mean ± SEM with n = 3 biological replicates. Greek letter delta (Δ) for the difference (ΔpEC_{50}) or affinity (ΔpK_B) when compared with the wild-type (WT) receptor values.

MRGPRX1	BAM8-22		BAM8-22/10 µM ML382		Allosteric	
Constructs	$pEC_{50} \pm SEM$	ΔpEC_{50}	$pEC_{50} \pm SEM$	ΔpEC_{50}	рК _в	$\Delta p K_B$
WT	6.33 ± 0.05	0	8.28 ± 0.07	0	4.86 ± 0.09	0
T31A	6.00 ± 0.09	-0.36	7.20 ± 0.06	-1.08	4.41 ± 0.09	-0.45
T34A	5.63 ± 0.11	-0.73	7.06 ± 0.09	-1.22	4.46 ± 0.13	-0.40
Y82A	6.11 ± 0.07	-0.25	6.63 ± 0.11	-1.65	3.62 ± 0.10	-1.24
Y99A	5.40 ± 0.10	-0.96	6.23 ± 0.09	-2.05	3.81 ± 0.11	-1.05
M102A	5.70 ± 0.09	-0.66	7.24 ± 0.08	-1.04	4.55 ± 0.11	-0.31
H254A	N.D.	N.D.	6.53 ± 0.09	-1.75	4.34 ± 0.06	-0.52
1258A	5.85 ± 0.07	-0.51	6.21 ± 0.08	-2.07	3.24 ± 0.09	-1.62

Supplementary Table 3. The MRGPRX1 and Gq protein interface mutations tested in BRET2 dissociation assay. EC_{50} and E_{max} estimates represent the average and standard error of the mean (SEM) from three independent experiments performed in triplicate. E_{max} is defined as percent WT maximum response. N.D; no detected activity as equilibrium could not be achieved at maximum agonist concentration for a reliable curve fitting.

	Compound-16		BAM8-22			BAM8-22 + 1 µM ML382			
MRGPRX1	pEC ₅₀ ±	EC ₅₀	E _{max} ±	pEC ₅₀ ±	EC ₅₀	E _{max} ±	pEC ₅₀ ±	EC ₅₀	E _{max} ±
Constructs	SEM	(µM)	SEM,	SEM	(µM)	SEM,	SEM	(µM)	SEM,
			% WT			% WT			% WT
WT	6.68 ± 0.05	0.21	100 ± 2	6.23 ± 0.04	0.59	100 ± 2	7.15 ± 0.03	0.07	100 ± 1
F61A	6.09 ± 0.06	0.81	94 ± 3	5.57 ± 0.08	2.70	91 ± 5	6.78 ± 0.05	0.17	99 ± 2
S123A	6.83 ± 0.05	0.15	104 ± 2	6.07 ± 0.05	0.85	101 ± 3	6.96 ± 0.04	0.11	99 ± 2
V124A	5.84 ± 0.07	1.46	76 ± 3	5.42 ± 0.10	3.83	77 ± 6	6.64 ± 0.05	0.23	88 ± 2
I128A	4.66 ± 0.25	22.1	58 ± 17	N.D.	N.D.	<50	N.D.	N.D.	<50
Y130A	6.50 ± 0.05	0.31	98 ± 2	5.96 ± 0.07	1.09	93 ± 5	7.00 ± 0.05	0.10	86 ± 2
R131A	N.D.	N.D.	<50	N.D.	N.D.	<50	N.D.	N.D.	<50
C132A	5.25 ± 0.14	5.60	63 ± 7	5.23 ± 0.13	5.92	60 ± 7	6.47 ± 0.08	0.34	63 ± 3
R213A	7.38 ± 0.03	0.04	105 ± 2	6.66 ± 0.04	0.22	116 ± 2	7.32 ± 0.03	0.05	106 ± 2
L214A	5.84 ± 0.07	1.44	68 ± 3	5.56 ± 0.10	2.78	67 ± 6	6.68 ± 0.05	0.21	89 ± 2
T217A	7.11 ± 0.04	0.08	105 ± 2	6.45 ± 0.04	0.36	123 ± 2	7.23 ± 0.04	0.06	106 ± 2

Supplementary Table 4. The sequences of primers that used for generating the

MRGPRX1 mutations.

Name	5'-Sequence-3'
MRGPRX1_T31A_Fwd	GTCCTTGgCTGTCCTCACCTGTATTGTAAGTCTGGTG
MRGPRX1_T31A_Rev	GAGGACAGcCAAGGACAGTGTTTGCTTGTAACAAAG
MRGPRX1_T34A_Fwd	GTCCTCgCCTGTATTGTAAGTCTGGTGGGGGCTGAC
MRGPRX1_T34A_Rev	CAATACAGGcGAGGACAGTCAAGGACAGTGTTTGCTTG
MRGPRX1_F61A_Fwd	GAATGCTgcCTCCATTTACATACTGAACCTCGCCG
MRGPRX1_F61A_Rev	AATGGAGgcAGCATTCCGTCGCATCCGGCAACCCAG
MRGPRX1_R79A_Fwd	CTCAGGGgcACTTATCTACAGCCTTTTGTCTTTTATC
MRGPRX1_R79A_Rev	GATAAGTgcCCCTGAGAGGAAAAGGAAATCAGCAG
MRGPRX1_Y82A_Fwd	CTTATCgcCAGCCTTTTGTCTTTTATCAGCATTC
MRGPRX1_Y82A_Rev	AAGGCTGgcGATAAGTCTCCCTGAGAGGAAAAG
MRGPRX1_Y99A_Fwd	GATCCTGgcCCCGGTCATGATGTTTTCTTACTTC
MRGPRX1_Y99A_Rev	GACCGGGgcCAGGATCTTGGAAATTGTATGTGGAATG
MRGPRX1_P100A_Fwd	CTGTACgCGGTCATGATGTTTTCTTACTTCGCC
MRGPRX1_P100A_Rev	CATGACCGcGTACAGGATCTTGGAAATTGTATG
MRGPRX1_M102A_Fwd	CCGGTCgcGATGTTTTCTTACTTCGCCGGCCTGTC
MRGPRX1_M102A_Rev	GAAAACATCgcGACCGGGTACAGGATCTTGGAAATTG
MRGPRX1_S123A_Fwd	TGTCTGgcTGTCCTCTGGCCGATTTGGTATAGGTG
MRGPRX1_S123A_Rev	GAGGACAgcCAGACATCTTTCCGTGGAGACTGCAC
MRGPRX1_V124A_Fwd	CTGTCTGcCCTCTGGCCGATTTGGTATAGGTGTC
MRGPRX1_V124A_Rev	CCAGAGGgCAGACAGACATCTTTCCGTGGAGAC
MRGPRX1 I128A Fwd	TGGCCGqcTTGGTATAGGTGTCATAGGCCGACTC
MRGPRX1_I128A_Rev	ATACCAAgcCGGCCAGAGGACAGACAGACATCTTTC
MRGPRX1 Y130A Fwd	GATTTGGacTAGGTGTCATAGGCCGACTCACCTG
MRGPRX1 Y130A Rev	GACACCTAgcCCAAATCGGCCAGAGGACAGACAG
MRGPRX1 R131A Fwd	TGGTATacGTGTCATAGGCCGACTCACCTGAGTG
MRGPRX1 R131A Rev	ATGACACqcATACCAAATCGGCCAGAGGACAGAC
MRGPRX1 C132A Fwd	GTATAGGacTCATAGGCCGACTCACCTGAGTGCCG
MRGPRX1 C132A Rev	CCTATGAacCCTATACCAAATCGGCCAGAGGACAG
MRGPRX1 E157A Fwd	ATACTGGcGTGGATGCTGTGTGGGATTTCTCTTTAGTG
MRGPRX1 E157A Rev	CATCCACaCCAGTATAGACCGCAGAAGGGAGAGG
MRGPRX1 W158A Fwd	CTGGAGacGATGCTGTGTGGATTTCTCTTTAGTG
MRGPRX1 W158A Rev	CAGCATCacCTCCAGTATAGACCGCAGAAGGGAG
MRGPRX1 C161A Fwd	ATGCTGacTGGATTTCTCTTTAGTGGTGCCGACTC
MRGPRX1 C161A Rev	GAAATCCAqcCAGCATCCACTCCAGTATAGACC
MRGPRX1 C173A Fwd	GCATGGacTCAGACCAGTGATTTTATCACTGTC
MRGPRX1 C173A Rev	GGTCTGAacCCATGCAGAGTCGGCACCACTAAAGAG
MRGPRX1 D177A Fwd	ACCAGTGCTTTTATCACTGTCGCCTGGCTTATTTTC
MRGPRX1 D177A Rev	GATAAAAacACTGGTCTGACACCATGCAGAGTCGGCAC
MRGPRX1 R213A Fwd	CTGACAacCCTGTACGTGACCATCCTTCTGACGG
MRGPRX1 R213A Rev	GTACAGGacTGTCAGTGGGATTTTGCGGCTGCCAC
MRGPRX1 L214A Fwd	GACACGCacGTACGTGACCATCCTTCTGACGGTA
MRGPRX1 L214A Rev	CACGTACacGCGTGTCAGTGGGATTTTGCGGCTG
MRGPRX1 T217A Fwd	GTACGTGoCCATCCTTCTGACGGTATTGGTGTTC
MRGPRX1_T217A_Rev	GAAGGATGGcCACGTACAGGCGTGTCAGTGGGATTTTG
MRGPRX1_F232A_Fwd	TTGCCTacCGGGATCCAATTCTTCCTCTTCCTCTG
MRGPRX1_F232A_Rev	GATCCCGacAGGCAAACCACACAGGAGGAACACC
MRGPRX1 F236A Fwd	GATCCAAgcCTTCCTCTCCTCTGGATACACGTG
MRGPRX1 F236A Rev	GAGGAAGacTTGGATCCCGAAAGGCAAACCACAC
MRGPRX1 L240A Fwd	CTCTTCacCTGGATACACGTGGATCGGGAAGTG
MRGPRX1 L240A Rev	GTATCCAGacGAAGAGGAAGAATTGGATCCCGAAAG
MRGPRX1 W241A Fwd	CTTCCTCacGATACACGTGGATCGGGAAGTGCTTTTC
MRGPRX1 W241A Rev	GTGTATCacGAGGAAGAGGAAGAATTGGATCCCGAAAG
MRGPRX1 1249A Fwd	GAAGTGacTTTCTGCCACGTTCACCTGGTGAGTATC
MRGPRX1 L249A Rev	GCAGAAAacCACTTCCCGATCCACGTGTATCCAG

MRGPRX1_F250A_Fwd	GTGCTTgcCTGCCACGTTCACCTGGTGAGTATCTTTC
MRGPRX1_F250A_Rev	GTGGCAGgcAAGCACTTCCCGATCCACGTGTATCCAG
MRGPRX1_H254A_Fwd	CACGTTgcCCTGGTGAGTATCTTTCTGTCCGCACTG
MRGPRX1_H254A_Rev	CACCAGGgcAACGTGGCAGAAAAGCACTTCCCGATC
MRGPRX1_L255A_Fwd	GTTCACgcGGTGAGTATCTTTCTGTCCGCACTG
MRGPRX1_L255A_Rev	ACTCACCgcGTGAACGTGGCAGAAAAGCACTTC
MRGPRX1_I258A_Fwd	GTGAGTgcCTTTCTGTCCGCACTGAATAGCAGCGC
MRGPRX1_I258A_Rev	CAGAAAGgcACTCACCAGGTGAACGTGGCAGAAAAG

Supplementary Table 5. Cryo-EM data collection, refinement, and validation

statistics.

	MRGPRX1-Gq BAM8-22 (EMD-27752) (PDB 8DWC)	MRGPRX1-Gq BAM8-22/ML382 (EMD-27753) (PDB 8DWG)	MRGPRX1-Gq Compound-16 (EMD- 27754) (PDB 8DWH)
Data collection and processing			
Magnification	45,000	45,000	45,000
Voltage (kV)	200	200	200
Electron exposure (e–/Ų)	44.5	44.5	43.8
Number of movies used	3801	2495	3218
Defocus mean (SD) µm'	1.4 (0.5)	1.3 (0.3)	1.5 (0.5)
Range Pixel size (Å)	0.1-3.3	0.2-2.4	0.1-3.0
Symmetry imposed	C1	0.00 C1	C1
Initial particle images (no.)	2,246,376	402,342	176,422
Final particle images (no.)	652,843	290,962	116,978
Map resolution (Å) ²	2.87	2.71	3.25
FSC threshold	0.143	0.143	0.143
Map resolution range (A)	2.5-4.7	2.3-5.1	2.8-6.6
Refinement			
Initial model used (PDB code)	7S8N	7S8N	7S8N
Model resolution (Å)	3.01	2.88	3.58
FSC threshold	0.5	0.5	0.5
Map sharpening B factor (Å2)	110.5	76.6	89.4
Model composition			
Non-hydrogen atoms	8298	8350	6444
Protein residues	1102	1101	858
Liganus	/	1	1
<i>B</i> factors (Å ²)			
Protein	52.92	50.63	60.77
Ligand	/	49.92	61.66
R.m.s. deviations			
Bond lengths (A)	0.008	0.005	0.004
Bond angles (*)	0.637	0.590	0.551
Validation			
MolProbity score	1.73	1.68	1.64
Clashscore	7.22	6.56	7.56
	0.00	0.00	0.00
Ramachandran plot			
Favored (%)	0.00	0.00	0.00
Allowed (%)	4.81	4.53	3.44
	95.19	95.47	96.56

1 underfocus positive 2 Resolution estimates from cryoSPARC auto-corrected GSFSC

The unprocessed scan of the SDS-PAGE gel. The Supplementary Figure 1b is shown in the red frame.