nature machine intelligence

Article

https://doi.org/10.1038/s42256-022-00605-1

Interpretable bilinear attention network
withdomainadaptationimproves
drug-target prediction

Received: 1 August 2022

Accepted: 22 December 2022

Peizhen Bai®", Filip Miljkovié ®2, Bino John® & Haiping Lu®'

Published online: 2 February 2023

W Check for updates

Predicting drug-target interactionis key for drug discovery. Recent
deep learning-based methods show promising performance, but two
challenges remain: how to explicitly model and learn local interactions

between drugs and targets for better prediction and interpretation and
how to optimize generalization performance of predictions on novel drug-
target pairs. Here, we present DrugBAN, a deep bilinear attention network
(BAN) framework with domain adaptation to explicitly learn pairwise
localinteractions between drugs and targets, and adapt in response to
out-of-distribution data. DrugBAN works on drug molecular graphs and
target protein sequences to perform prediction, with conditional domain
adversarial learning to align learned interaction representations across
different distributions for better generalization on novel drug-target
pairs. Experiments on three benchmark datasets under both in-domain
and cross-domain settings show that DrugBAN achieves the best overall
performance against five state-of-the-art baseline models. Moreover,
visualizing the learned bilinear attention map provides interpretable
insights from prediction results.

Drug-target interaction (DTI) prediction serves as animportant step
in the process of drug discovery'>. Traditional biomedical measure-
ment from in vitro experiments is reliable but has notably high cost
and time-consuming development cycles, preventing its application
tolarge-scale data*. By contrast, identifying high-confidence DTl pairs
by insilico approaches can greatly narrow down the search scope of
compound candidates, and provide insights into the causes of poten-
tial side effects indrug combinations. Therefore, in silico approaches
have gained increasing attention and made much progress in the past
few years®®.

For in silico approaches, traditional structure-based and
ligand-based virtual screening methods have been studied widely
for their relatively effective performance’. However, structure-based
virtual screening requires molecular docking simulation, whichis not
applicable if the target protein’s three-dimensional (3D) structure is

unknown. Furthermore, ligand-based virtual screening predicts new
active molecules based on the known actives of the same protein,
but the performance is poor when the number of known actives is
insufficient®,

More recently, deep learning-based approaches have rapidly pro-
gressed for computational DTI prediction due to their successes in
other areas, enabling large-scale validation in a relatively short time’.
Many of them are constructed from a chemogenomics perspective®™,
which integrates the chemical space, genomic space and interaction
informationinto a unified end-to-end framework. As the number of bio-
logical targets that have available 3D structures is limited, many deep
learning-based models take linear or two-dimensional (2D) structural
information of drugs and proteins as inputs. They treat DTI predic-
tion as a binary classification task, and make predictions by feeding
the inputs into different deep encoding and decoding modules such
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as deep neural network (DNN)"*2, graph neural network (GNN)*?13
or transformer architectures'”. With the advances of deep learning
techniques, such models can automatically learn data-driven repre-
sentations of drugs and proteins from large-scale DTI data instead of
using only pre-defined descriptors.

Despite these promising developments, two challenges remain for
existing deep learning-based methods. The first challenge is explicit
learning of interactions between local structures of drug and protein.
DTlis essentially decided by mutual effects betweenimportant molecu-
lar substructures in the drug compound and binding sites in the protein
sequence'®, However, many previous models learn global representa-
tions using their separate encoders, without explicitly learning local
interactions>*'**° Consequently, drug and protein representations
are learned for the whole structures first, and mutual information is
onlyimplicitly learned in the black-box decoding module. Interactions
between drug and target are particularly related to their crucial sub-
structures; therefore, separate global representation learning tends to
limit the modelling capacity and prediction performance. Moreover,
without explicit learning of local interactions, the prediction result is
hard tointerpret, evenif the prediction is accurate.

The second challenge is generalizing prediction performance
across domains, beyond the learned distribution. Owing to the vast
regions of chemical and genomic space, drug-target pairsthat need to
be predictedinreal-world applications are often unseen and dissimilar
toany pairsin the training data. They have different distributions and
therefore need cross-domain modelling?-*%. A robust model should
be able to transfer learned knowledge to a new domain that only has
unlabelled data. Inthis case, we need to align distributions and improve
cross-domaingeneralization performance by learning transferable rep-
resentations; for example, from ‘source’to ‘target’. To our knowledge,
thisisan underexplored direction in drug discovery®.

Toaddress these challenges, we propose aninterpretable bilinear
attention network-based model (DrugBAN) for DTI prediction, asshown
inFig.1a.DrugBANis adeep learning framework with explicitlearning
oflocalinteractions between drug and target, and conditional domain
adaptation for learning transferable representations across domains.
Specifically, we first use graph convolutional networks?* (GCNs) and
convolutional neural networks (CNNs) to encode local structuresasa2D
molecular graphand one-dimensional (1D) proteinsequence. Thenthe
encoded local representations are fed into a pairwise interaction mod-
ule that consists of a bilinear attention network®** tolearnlocal interac-
tion representations, as depicted in Fig. 1b. The local joint interaction
representations are decoded by a fully connected layer to make a DTI
prediction. In this way, we can utilize the pairwise bilinear attention map
tovisualize the contribution of each substructure to the final predictive
result, improving the interpretability. For cross-domain prediction,
we apply conditional domain adversarial network” (CDAN) to transfer
learned knowledge from source domain to target domain to enhance
cross-domain generalization, as illustrated in Fig. 1c. We conduct a
comprehensive performance comparison against five state-of-the-art
DTIprediction methods onbothin-domain and cross-domain settings
of drug discovery. The results show that our method achieves the best
overall performance compared to state-of-the-art methods, while pro-
vidinginterpretable insights for the prediction results.

To summarize, DrugBAN differs from previous works in three
mainways. First, it captures pairwise local interactions between drugs
and targets with a bilinear attention mechanism. Second, it enhances
cross-domain generalization with an adversarial domain adaptation
approach. It gives an interpretable prediction with bilinear attention
weights instead of black-box results.

Results

Problem formulation

InDTlprediction, the taskis to determine whether a pair of adrug com-
pound and a target protein will interact. For the target protein, we

denote each protein sequence as = (a;, ..., a,), Where each token q;
represents one of the 23 amino acids. For the drug compound, most
existing deep learning-based methods represent the input by the sim-
plified molecular-input line-entry system (SMILES)?®, whichis a 1D
sequence describing chemical atom and bond token information in
the drug molecule. The SMILES format enables encoding of drug infor-
mation with many classic deep learning architectures. However, given
that the 1D sequence is not a natural representation for molecules,
someimportant structural information of drugs could be lost, degrad-
ing model prediction performance. Our model converts input SMILES
intoits corresponding 2D molecular graph. Specifically, adrug molec-
ulargraphisdefinedas G = (V, &), where Visthe set of vertices (atoms)
and €is the set of edges (chemical bonds).

Given a protein sequence 2 and a drug molecular graph G, DTI
predictionaimstolearnamodel M to map thejoint feature representa-
tion space P x Gto aninteraction probability score p € [0, 1]. Supple-
mentary Table 3 provides the commonly used notations in this paper.

DrugBAN framework

The proposed DrugBAN framework is shown in Figure 1a. Given an
inputdrug-target pair, we first use separate GCN and 1D convolutional
neural network (1D CNN) blocks to encode molecular graph and protein
sequence information, respectively. Then we use a bilinear attention
network module to learn local interactions between encoded drug
and protein representations. The bilinear attention network consists
of abilinear attention step and a bilinear pooling step to generate a
jointrepresentation, asillustrated in Fig. 1b. Second, afully connected
classification layer learns a predictive score, indicating the probabil-
ity of interaction. To improve model generalization performance on
cross-domain drug-target pairs, we further embed CDAN into the
framework to adapt representations for better aligning source and
target distributions, as shownin Fig. 1c.

Evaluation strategies and metrics
We study classification performance on three public datasets sepa-
rately: BindingDB*, BioSNAP*° and Human'®*!, with hold-out test sets
(‘unknown’) kept back for evaluation. We use two different split strate-
giesforin-domainand cross-domain settings. Forin-domainevaluation,
each experimental datasetis randomly divided into training, validation
and test setswith a 7:1:2 ratio. For cross-domain evaluation, we propose
aclustering-based pair split strategy to construct cross-domain scenar-
ios. We conduct cross-domain evaluation onthe large-scale BindingDB
and BioSNAP datasets. For each dataset, we first use the single-linkage
algorithmto cluster drugs and proteins by ECFP4 (extended connectiv-
ity fingerprint, up to four bonds)** fingerprint and pseudo-amino acid
composition (PSC)*, respectively. After that, we randomly select 60%
drug clusters and 60% protein clusters from the clustering result, and
considerall drug-target pairsbetween the selected drugs and proteins
as source domain data. All the pairs between drugs and proteinsin
the remaining clusters are considered to be target domain data. The
clusteringimplementation details are provided in the Supplementary
Information, section 1. Under the clustering-based pair split strategy,
the source and target domains are non-overlapping with different dis-
tributions. Following the general setting of domain adaptation, we
use alllabelled source domain dataand 80% unlabelled target domain
dataasthetrainingset, and the remaining 20% labelled target domain
data as the test set. The cross-domain evaluation is more challeng-
ing than in-domain random split, but provides a better measure of
model generalization ability in real-world drug discovery. For amore
comprehensive study, we report additional experiments across dif-
ferent protein families, on unseen drugs or targets, and with those
with a high fraction of missing data (Supplementary Information,
sections 4-6, respectively).

The area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve (AUPRC) are
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Fig.1| Overview of the DrugBAN framework. a, The input drug molecule and
protein sequence are separately encoded by GCNs and 1D CNNs. Each row of

the encoded drug representationis an aggregated representation of adjacent
atomsinthe drug molecule, and each row of the encoded protein representation
isasubsequence representation in the protein sequence. The drug and protein
representations are fed into a bilinear attention network to learn their pairwise
localinteractions. Thejoint representation fis decoded by a fully connected
decoder module to predict the DTl probability p. If the prediction task is cross-
domain, the CDAN” module is employed to align learned representations in

the source and target domains. b, The bilinear attention network architecture.

Feature extractor

H,and H,are encoded drug and protein representations. Instep 1, the bilinear
attention map matrix Iis obtained by alow-rank bilinear interaction modelling
through transformation matrices Uand V to measure the substructure-level
interactionintensity*’. Thenlis utilized to produce the joint representation fin
step 2 by bilinear pooling by the shared transformation matrices Uand V. ¢, CDAN
is adomain adaptation technique to reduce the domain shift between different
distributions of data. We use CDAN to embed joint representation fand softmax
logits g for source and target domains into a joint conditional representation by
the discriminator, a two-layer fully connected network that minimizes the domain
classification error to distinguish the target domain from the source domain.

used as the major metrics to evaluate model classification perfor-
mance. Inaddition, we also report accuracy, sensitivity and specificity
atthethreshold of the best F1score. We conduct fiveindependent runs
with different random seeds for each dataset split. The best performing
modelisthe onewiththe best AUROC on the validation set. This model
is then evaluated on the test set to report the performance metrics.

In-domain performance comparison
Here, we compare DrugBAN with five baselines under the random
split setting: support vector machine (SVM)*, random forest (RF)*,
DeepConv-DTI", GraphDTA" and MolTrans". This is the in-domain
scenario, so we use vanilla DrugBAN without embedding the CDAN
module. Table 1shows the comparison on the BindingDB and BioSNAP
datasets. DrugBAN has consistently outperformed baselinesin terms
of AUROC, AUPRC and accuracy, while its performance in sensitivity
and specificity is also competitive. The resultsindicate that data-driven
representation learning can capture more importantinformation than
pre-defined descriptor featuresinin-domain DTl prediction. Moreover,
DrugBAN can captureinteraction patterns throughiits pairwise interac-
tion module, further improving prediction performance.

The in-domain results on the Human dataset are shown in
Figure 2. Under the random split, the deep learning-based models all

achieve similar and promising performance (AUROC > 0.98). However,
aspointed outinref.’, the Human dataset had some hidden ligand bias,
resultinginthe correct predictions being made only based on the drug
features rather thaninteraction patterns. The high accuracy could be
due to bias and overfitting, not a model’s real-world performance of
prospective prediction. Therefore, we further use a cold pair split strat-
egy to evaluate models to mitigate the overoptimism of performance
estimationunder random split due to the databias. This cold pair split
strategy guarantees that all test drugs and proteins are not observed
during training so that prediction on test data cannot rely only on the
features of known drugs or proteins. We randomly assign 5% and 10%
DTl pairsinto the validation and test sets, respectively, and remove all
of their associated drugs and proteins from the training set. Figure 2
indicates that all models have a significant performance drop from
random split to cold pair split, especially for SVM and RF. However,
we can see that DrugBAN still achieves the best performance against
other state-of-the-art deep learning baselines.

Cross-domain performance comparison

In-domain classification under random split is an easier task and of
less practical importance. Therefore, next, we study more realistic
and challenging cross-domain DTI prediction, in which training data
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Table 1| In-domain performance comparison on the BindingDB and BioSNAP datasets with random split (statistics over five

random runs)

Dataset Method AUROC AUPRC Accuracy Sensitivity Specificity

BindingDB SVMm* 0.939+0.001 0.928+0.002 0.825+0.004 0.781£0.014 0.886+0.012
RF* 0.942+0.0M 0.921+0.016 0.880+0.012 0.875+0.023 0.892+0.020
DeepConv-DTI" 0.945+0.002 0.925+0.005 0.882+0.007 0.873+0.018 0.894+0.009
GraphDTA"™ 0.951£0.002 0.934+0.002 0.888+0.005 0.882+0.012 0.897+0.008
MolTrans" 0.952+0.002 0.936+0.001 0.887+0.006 0.877+0.016 0.902+0.009
DrugBAN 0.960:0.001 0.948:0.002 0.904+:0.004 0.900+0.008 0.908+0.004

BioSNAP SVM* 0.862+0.007 0.864+0.004 0.777+0.01 0.711£0.042 0.841+0.028
RF* 0.860+0.005 0.886+0.005 0.804+0.005 0.823+0.032 0.786+0.025
DeepConv-DTI" 0.886+0.006 0.890+0.006 0.805+0.009 0.760+0.029 0.851£0.013
GraphDTA"™ 0.887+0.008 0.890+0.007 0.800+0.007 0.745+0.032 0.854:0.025
MolTrans" 0.895+0.004 0.897+0.005 0.825+0.010 0.818+0.031 0.831+0.013
DrugBAN 0.903+0.005 0.902+0.004 0.834:0.008 0.820£0.021 0.847+0.010

The results are presented as mean +standard deviation. The best result for each dataset and metric is marked in bold and the second-best result is underlined.
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Fig.2|In-domain performance comparison on the Human dataset with
random split and cold pair split (statistics over five random runs). The
vertical bars represent the mean, and the black lines are error bars indicating
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the standard deviation. The dots indicates performance scores in eachrandom
run of models. Supplementary Table 2 provides the data statistics of the Human
dataset.

and test data have different distributions. To imitate this scenario,
the original data are divided into source and target domains by the
clustering-based pair split. We turn on the CDAN module of DrugBAN
(that is, we use DrugBANpan) to study knowledge transferability in
cross-domain prediction.

The performance evaluation on the BindingDB and BioSNAP
datasets with clustering-based pair split is presented in Figure 3.
Compared to the previous in-domain prediction results, the per-
formance of all DTI models drops significantly due to less informa-
tion overlap between training and test data. In this scenario, vanilla
DrugBAN still outperforms other state-of-the-art models on the
whole. Specifically, it outperforms MolTrans by 2.9% and 7.4% in
AUROC on the BioSNAP and BindingDB datasets, respectively. The
results show that DrugBAN is a robust method under both in-domain
and cross-domain settings. Interestingly, RF achieves good per-
formance and even consistently outperforms other deep learning
baselines (DeepConv, GraphDTA and MolTrans) on the BindingDB
dataset. The results indicate that deep learning methods are not
always superior to shallow machine learning methods under the
cross-domain setting.

Recently, domainadaptationtechniques havereceived increasing
attention due to their ability to transfer knowledge across domains,
but they are mainly applied to computer vision and natural language
processing problems. We combine vanilla DrugBAN with CDAN to
tackle cross-domain DTI prediction. As shown in Fig. 3, DrugBAN .y
has significant performance improvements with the introduction of
adomainadaptation module. Onthe BioSNAP dataset, it outperforms
vanillaDrugBAN by 4.6% and 16.9% in AUROC and AUPRC, respectively.
By minimizing the distribution discrepancy across domains, CDAN
can effectively enhance DrugBAN generalization ability and provide
more reliable results.

These results demonstrate the strength of DrugBAN in general-
izing prediction performance across domains.

Ablation study

Here, we conduct an ablation study to investigate the influences of
bilinear attention and domain adaptation modules on DrugBAN. The
results are shown in Table 2. To validate the effectiveness of bilinear
attention, we study three variants of DrugBAN that differ in the joint
representation computation between drugand protein: one-side drug
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Fig.3| Cross-domain performance comparison on the BindingDB and
BioSNAP datasets with clustering-based pair split (statistics over five
random runs). The box plots show the median as the centre lines and the mean

second-worst scores. The maxima and upper percentile indicate the best and
second-best scores. Supplementary Table 2 provides the data statistics of the
BindingDB and BioSNAP datasets.

as green triangles. The minima and lower percentile represent the worst and

Table 2| Ablation study in AUROC on the BindingDB and BioSNAP datasets with random split and clustering-based split
strategies (statistics over five random runs)

Ablation tests BindingDB,..qom BioSNAP,...¢om BindingDB, e BioSNAP, i

Linear concatenation®® 0.949+0.002 0.887+0.007 NA NA

One-side target attention™ 0.950+0.002 0.890+0.005 NA NA

One-side drug attention" 0.953+0.002 0.892+0.004 NA NA

DrugBAN 0.960+0.001 0.903+0.005 0.575+0.025 0.654+0.023

MolTranscpay NA NA 0.575+0.038 0.656+0.028

DrugBANpann NA NA 0.592+0.042 0.667+0.030

DrugBANcpan NA NA 0.604+0.039 0.684:0.026

The results are presented as mean+standard deviation. The first four models show the effectiveness of our bilinear attention module, and the last three models show the strength of
DrugBANpay ON cross-domain prediction. The best AUROC result for each dataset is marked in bold and the second-best result is underlined. NA, not applicable to this study.

attention, one-side protein attention and linear concatenation. The
one-side attention is equivalent to the neural attention mechanism
introduced in ref.'*, which is used to capture the joint representation
between a drug vector representation and a protein subsequence
matrix representation. We replace the bilinear attention in DrugBAN
with one-side attention to generate the two variants. Linear concat-
enation is a simple vector concatenation of drug and protein vector
representations after a max-pooling layer. As shown in the first four
rows of Table 2, the results demonstrate that bilinear attention is the
most effective method to capture interaction information for DTI
prediction. To examine the effect of CDAN, we study two variants:
DrugBAN with domain adversarial neural network (DANN)* (that is,
DrugBAN,w) and MolTrans with CDAN (thatis, MolTransp,y). DANN
isanother adversarial domain adaptation technique that does not take
into consideration classification distribution. The last four rows of
Table 2 indicate that DrugBAN, still achieves the best performance
improvement in cross-domain prediction.

Interpretability with bilinear attention visualization

A further strength of DrugBAN is to enable molecular level insights
and interpretation critical for drug design efforts, utilizing the com-
ponents of the bilinear attention map to visualize the contribution of
each substructure to the final predictive result. Here, we examine the
top three predictions (PDB IDs: 6QL2 (ref. *), SWSL (ref. **) and 4N6H
(ref.*)) of co-crystalized ligands from the Protein Data Bank (PDB)*.

Only X-ray structures with resolution greater than 2.5 A that corre-
sponded to human protein targets proceeded to selection. Inaddition,
co-crystalized ligands were required to have pIC;, <100 nM and not to
be part of the training set. The visualization results are shownin Fig. 4a
alongside the ligand-protein interaction maps originating from the
corresponding X-ray structures. For each molecule, we coloured its
top 20% weighted atoms in the bilinear attention map in orange.

For PDB structure 6QL2 (ethoxzolamide complexed with human
carbonic anhydrase 2), our model correctly interpreted the sulfona-
mide region as essential for ligand-protein binding (with sulfonamide
oxygen as a hydrogen bond acceptor to the backbone of Leu198 and
Thr199, and the amino group as a hydrogen bond donor to the side
chains of His94 and Thr199). Conversely, the ethoxy group of ethox-
zolamide wasincorrectly predicted to form specific interactions with
the protein, althoughits exposure to the solvent may promote further
binding (blue highlight). In addition, benzothiazole scaffold, which
forms an arene-H interaction with Leu198, is only partly highlighted
by ourinterpretability model. Itis worth mentioning that although the
top 20% of interacting atoms of ethoxzolamide corresponded to only
three highlighted atoms, all of themindicated different ligand-protein
interaction sites corroborated by the X-ray structure.

In structure SW8L (9YA ligand bound to human I-lactate dehy-
drogenase A), the interpretability feature once more highlighted
importantinteraction patterns for ligand-protein binding. For exam-
ple, the sulfonamide group was once more indicated to form specific
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shows the 2D structures of ligands with highlighted atoms (orange) that were
predicted to contribute to protein binding. All structures were visualized

using RDKit*°. In addition, ligand-protein interaction maps (right side of each
panel) from the corresponding crystal structures of these ligands are provided.
b, Interpretability of binding pocket structures. The 3D representations of
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ligand-protein binding pockets are provided, highlighting the correctly
predicted amino acid residues (orange) that surround the corresponding ligands
(cyan). The remaining amino acid residues, secondary structure elements and
surface maps are coloured in grey. All ligand-protein interaction maps and

3D representations of X-ray structures were visualized using the Molecular
Operating Environment (MOE) software.

interactions with the protein (with the amino group as a hydrogen
bond donor to the side chains of Asp140 and Glu191, and sulfonamide
oxygen as a hydrogen bond acceptor to the backbone of Asp140 and
lle141). Similarly, we noted that the carboxylic acid group was also
partly highlighted (in SW8L, carboxylic acid oxygens act as hydrogen
bond acceptors to the side chains of Argl68, His192 and Thr247).
Moreover, biphenyl rings were correctly predicted to participate in
ligand-protein binding (in SW8L, arene-H interaction with Argl05
and Asnl137). Although 9YA (bound to 5W8L) was much larger and
complex than ethoxzolamide (bound to 6QL2), the model showed
good interpretability potential for the majority of the experimentally
confirmed interactions.

In the third example, 4N6H X-ray complex of human delta-type
opioid receptor with EJ4 ligand, the maininteracting functional groups
of EJ4 were once more highlighted correctly. Here, a hydroxyl group
ofthealiphaticring complexand aneighbouring tertiary amine (both
as hydrogen bond donors to the side chain of Asp128) were correctly

interpreted to form specificinteractions. However, the phenol group
was wrongly predicted to participate in protein binding.

As for the more challenging protein sequence interpretability,
the results were weaker overall than those for ligand interpretability.
Although many amino acid residues that were predicted to potentially
participateinligand binding were in fact distantly located to the respec-
tive compounds, anumber of amino acid residues forming the binding
siteswere correctly predicted (Fig. 4b). For example, in 6QL2 complex,
the following residues were highlighted: His94, His96, Thr200, Pro201,
Pro202,Leu203, Val207 and Trp209. Among these, only His94 forms a
specificinteraction with ethoxzolamide. In SW8L, none of the residues
that constitute the ligand-protein binding site were highlighted. How-
ever, in 4N6H, there were several correctly predicted residues within
the binding site: Lys214, Val217, Leu300, Cys303, 1le304, Gly307 and
Tyr308. Unfortunately, none of the residues participated in the specific
interactions with the ligand. Given these results, it is expected that
protein sequence interpretability would be less confident because
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the 1D protein sequence (used as protein information input in our
model) does not necessarily indicate the 3D configuration and locality
of the binding pocket. However, the results from the primary protein
sequence are encouraging enough to safely assume that the further
incorporationof 3D proteininformationinto the modelling framework
would eventually improve the model interpretability of drug-target
interaction networks.

Inaddition, as the interpretability provided by DrugBAN is adap-
tively learned from DTI data itself, such interpretation has potential
to find some hidden knowledge of local interactions that has not been
explored, and could help drug hunters to improve binding properties
ofagivenscaffold, ortoreduce the off-target liabilities of acompound.

Conclusion

In this work, we present DrugBAN, an end-to-end bilinear attention
deep learning framework for DTI prediction. We have integrated CDAN,
an adversarial domain adaptation network, into the modelling pro-
cess to enhance cross-domain generalization ability. Compared with
other state-of-the-art DTImodels and conventional machine learning
models, the experimental results show that DrugBAN consistently
achievesimproved DTl prediction performance inboth in-domain and
cross-domain settings. Furthermore, by mapping attention weights
to protein subsequences and drug compound atoms, our model can
provide biological insights for interpreting the nature of interactions.
The proposedideas are general in nature and can be extended to other
interaction prediction problems, such as the prediction of drug-drug
interaction and protein-proteininteraction.

Thiswork focuses on chemogenomics-based DTIusingalD protein
sequence and 2D molecular graph as input. Given that the number
of highly accurate 3D structured proteins accounts for only a small
fraction of the known protein sequences, this work did not consider
modelling with such structuralinformation. Nevertheless, DeepMind’s
AlphaFold" is making great progress in protein 3D structure prediction,
recently generating 2 billion protein 3D structure predictions from 1
million species. Such progress opens doors for utilizing 3D structural
information in chemogenomics-based DTI prediction. Following the
idea of pairwise localinteraction learning and domain adaptation, we
believe thatextending ourideas further on complex 3D structures can
lead to even better performance and interpretability in future work.
Finally, this work studies different datasets separately; combining
dataset integration with DrugBAN will be another interesting future
directionto explore.

Methods

Bilinear attention network

This is an attention-based model and was first proposed to solve the
problem of visual question answering (VQA)*. Given an image and
relevant natural language question, VQA systems aim to provide a text—
image matching answer. Therefore, VQA can be viewed as amultimodal
learning task, similar to DTI prediction. Bilinear attention networks
use a bilinear attention map to gracefully extend unitary attention
networks to adapt to multimodal learning, by considering every pair
of multimodal input channels (that is, the pairs of image regions and
question words) to learn an interaction representation. Compared
to using a unitary attention mechanism directly on multimodal data,
bilinear attention networks can provide richer joint information but
keep the computational cost at the same scale. Considering the similar-
ity between VQA and DTI problems, we designed a bilinear attention
network-inspired pairwise interaction module for DTI prediction.

Domain adaptation

These approaches train a model that reduces domain distribution
shift between the source domain and target domain, which is mainly
developed and studied in computer vision*’. Early domain adaptation
methods tended to reweight sample importance or learn invariant

feature representations in shallow feature space, using labelled data
in the source domain and unlabelled data in the target domain. More
recently, deep domain adaptation methods embed the adaptation
moduleinvarious deep architectures tolearntransferable representa-
tions™**, In particular, ref.” proposed a novel deep domain adaptation
method, CDAN, that combines adversarial networks with multilinear
conditioning for transferable representation learning. By introducing
classifier predictioninformationinto adversarial learning, CDAN can
effectively align data distributions in different domains. We embed
CDAN as anadaptation modulein DrugBAN to enhance model perfor-
mance for cross-domain DTI prediction.

DrugBAN architecture

CNN for protein sequence. The protein feature encoder consists of
three consecutive 1D convolutional layers, which transform an input
proteinsequence to amatrix representationinthe latent feature space.
Each row of the matrix denotes a subsequence representation in the
protein. Drawing on the concept of word embedding, we firstinitialize
all amino acids into a learnable embedding matrix £, € R**%, where
23isthe number of amino acid types and D, is the latent space dimen-
sionality. By looking up E,, each protein sequence » can be initialized
to corresponding feature matrix X, € R%*P. Here, O, is the maximum
allowed length of a protein sequence, which is set to align different
protein lengths and make batch training. Following previous stud-
ies”™*", protein sequences with maximum allowed length are cut, and
those with smaller length are padded with zeros.

The CNN-block protein encoder extracts local residue pat-
terns from the protein feature matrix X,.. Here, a protein sequence is
considered as an overlapping 3-mer amino acids such as METLCL...
DSMN > MET, ETL, TLC,..., DSM, DLK. The first convolutional layer is
utilized to capture the 3-mer residue-level features with kernel size = 3.
Then the next two layers continue to enlarge the receptive field and
learn more abstract features of local protein fragments. The protein
encoder isdescribed as follows:

H*Y = o(CNNW?, b, HY)), )

where W and b{” are the learnable weight matrices (filters) and bias
vector inthe /th CNN layer. H,(,’)is the lthhidden protein representation
andH}” = X, o(-) denotes anon-linear activation function, with ReLU(-)
used in our experiments.

GCN for molecular graph. For the drug compound, we convert each
SMILES string toits 2D molecular graph g. To represent node informa-
tionin g, we firstinitialize each atom node by its chemical properties,
asimplemented in the DGL-LifeSci* package. Eachatom s represented
asa74-dimensionalinteger vector describing eight pieces of informa-
tion: the atom type, the atom degree, the number of implicit Hs, the
formal charge, the number of radical electrons, the atom hybridization,
the number of total Hs and whether the atom is aromatic. Similar to
the maximum allowed length setting in a protein sequence above, we
setamaximumallowed number of nodes ©,. Molecules with less nodes
will contain virtual nodes with zero padded. As aresult, each graph’s
node feature matrix is denoted as M, € R%>74, Moreover, we use a
simple linear transformation to define X, = WoMJ, leading to a
real-valued dense matrix X, € R®>*P«as the input feature.

We use athree-layer GCNblock to effectively learn the graphrep-
resentation on drug compounds. GCN generalizes the convolutional
operator to an irregular domain. Specifically, we update the atom
feature vectors by aggregating their corresponding sets of neigh-
bourhood atoms, connected by chemical bonds. This propagation
mechanism automatically captures substructure information of a
molecule. We keep the node-level drug representation for subsequent
explicitlearning of local interactions with protein fragments. The drug
encoder is written as
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(1) _ A wO p® »go
H™ = o(GCNA, WY, b0 H)), 2

where W{and b’ are the layer-specific learnable weight matrix and
bias vector of GCN, A is the adjacency matrix with added
self-connections in molecular graph g, and H;” is the [th hidden node
representation with HY = X,.

Pairwise interaction learning. We apply abilinear attention network
module to capture pairwise local interactions between drug and pro-
tein. It consists of two layers: abilinear interaction map to capture pair-
wise attention weights and a bilinear pooling layer over the interaction
map to extractjoint drug-target representation.

Separate CNN and GCN encoders in the third layer generate the
hidden protein and drug representations HS” = {h}, hZ,...h%} and
H = (h!.h2, ..h}, where M and N denote the number of encoded
substructuresinaproteinand atomsinadrug. We construct the bilin-
ear interaction map using these hidden representations to obtain a
single head pairwise interaction matrix I € R¥*M:

I=(1-qNoo(H)TU) - o(VTHS), ®)

where U € RP~Kand V € R%*K are learnable weight matrices for drug
and proteinrepresentations, q € R¥isalearnable weight vector, 1 € RV
isafixed all-ones vector and - denotes Hadamard (element-wise) prod-
uct. The elements in I indicate the interaction intensity of respective
drug-target sub-structural pairs, with mapping to potential binding
sites and molecular substructures. To intuitively understand bilinear
interaction, an element1,;in equation (3) can also be written as

I = q"(o(UThi) o o(VTh))), @

where hi is the ith column of H”and h/ is the jth column of H$?, respec-
tively, denoting the ith and jth sub-structural representations of drug
andprotein. Therefore, we can see abilinear interaction as first mapping
representations h,and h{; toacommon feature space with weight matri-
cesUandV,andthenlearnaninteraction on Hadamard productandthe
weight of vector q. In this way, pairwise interactions provide interpret-
ability onthe contribution of sub-structural pairsto the predicted result.

Toobtainthejoint representation f € R, weintroduce abilinear
pooling layer over the interaction map I. Specifically, the kth element
of fliscomputed as

f, = oHD)TU)] - 1- o(H)TV),
N M ) ) )]
=Z ATV,

i=1j=

where U, and V, denote the kth column of weight matrices Uand V.
Notably, there are nonew learnable parameters at this layer. The weight
matricesUandV are shared with the previous interaction map layer to
decrease the number of parameters and alleviate overfitting. Moreover,
we add a sum pooling on the joint representation vector to obtain a
compact feature map:

f = SumPool(f, s), (6)

where the SumPool(-) functionisalD and non-overlapped sum pooling
operation with stride s. It reduces the dimensionality of f € RX to
f € RKs, Furthermore, we can extend the single pairwise interaction to
amulti-head form by calculating multiple bilinear interaction maps.
The final joint representation vector is a sum of individual heads.
As the weight matrices Uand V are shared, each additional head only
adds one new weight vector q, which is parameter-efficient. In our
experiments, the multi-head interaction has better performance than
asingle one.

Thus, using the novel bilinear attention mechanism, the model can
explicitly learn pairwise local interactions between drug and protein.
This interaction module is inspired by and adapted from refs. 2, in
which two bilinear models are designed for the VQA problem. To com-
pute theinteraction probability, we feed the joint representationfinto
the decoder, whichis one fully connected classification layer followed
by asigmoid function:

p = Sigmoid(W,f +b,), (7)

where W,and b, are learnable weight matrix and bias vector.

Finally, we jointly optimize all learnable parameters by backpropa-
gation. The training objective is to minimize the cross-entropy loss as
follows:

£ =~ Y 0log(p) + - y)logll - p) + S 1OI5 ®

where @isthe set of all learnable weight matrices and bias vectorsabove,
y;is the ground-truth label of the ith drug-target pair, p; is its output
probability by the modeland Aisahyperparameter for L2 regularization.

Cross-domain adaptation for better generalization. Machine learn-
ingmodels tend to perform well on similar data from the same distribu-
tion (that is, in-domain), but poorer on dissimilar data with different
distribution (that is, cross-domain). It is a key challenge to improve
model performance on cross-domain DTl prediction. In our framework,
we embed CDAN to enhance generalization fromasource domain with
sufficient labelled data to a target domain for which only unlabelled
dataareavailable.

Given a source domain 8 = i/(xf,y;)}fﬁl of N, labelled drug-target
pairsand atargetdomain s, = {xf},;lofN[unlabelled drug-target pairs,
weleverage CDAN to align their distributions and improve prediction
performance across domains. Figure 1c shows the CDAN workflow in
our framework, including three key components: the feature extractor
F(.), thedecoder G(-) and the domain discriminator D(-). We use F(-) to
denote the separate feature encoders and bilinear attention network
together to generate joint representations of input domain data; that
is, £ = F(x)and £ = F(xj) Next, we use the fully connected classification
layer mentioned’above followed by asoftmax function as G(-) to obtain
aclassifier prediction g} = G(f?) e R?and gj? = G(fjf) € R% Furthermore,
we apply amultilinear map to embed joint representation fand classi-
fier predictiongintoajoint conditional representation h € R2/s, which
isdefined as the flattening of the outer product of the two vectors:

h = FLATTEN(f® g), )

where ® is the outer product.

The multilinear map captures multiplicative interactions between
twoindependent distributions***”. Following the CDAN mechanism, we
simultaneously align the joint representation and predicted classifica-
tion distributions of source and target domains by conditioning the
domain discriminator D(-) on the h. The domain discriminator D(-),
consisting of athree-layer fully connected networks, learns to distinguish
whether ajoint conditional representation his derived from the source
domainorthetarget domain. Conversely, the feature extractor F(-) and
decoder G(-) are trained to minimize the source domain cross-entropy
loss £withsource labelinformation, and simultaneously generate indis-
tinguishable representation h to confuse the discriminator D(-). As a
result, we can formulate the two losses in the cross-domain modelling:
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where£;is the cross-entropy loss on the labelled source domain and
£Lqaisthe adversarialloss for domain discrimination. The optimization
problem is written as a minimax paradigm:

max n%n L(F,G) — wL,qy(F,G,D), (12)

where w > 0 is a hyperparameter to weight £,,,. By introducing the
adversarial trainingon £ 4, our framework canreduce the data distri-
bution shift between source and target domains, leading to the
improved generalization on cross-domain prediction.

Experimental setting

Datasets. We evaluate DrugBAN and five state-of-the-art baselines
on three public DTI datasets: BindingDB, BioSNAP and Human. The
BindingDB dataset is a web-accessible database*® of experimentally
validated binding affinities, focusing primarily on the interactions of
small drug-like molecules and proteins. We use alow-bias version of
the BindingDB dataset constructed in our earlier work (ref. *°), with
thebias-reducing preprocessing steps described in the Supplemen-
tary Information, section 2. The BioSNAP dataset is created from the
DrugBank database®® by ref. " and ref. *°, consisting of 4,510 drugs
and 2,181 proteins. It is a balanced dataset with validated positive
interactions and an equal number of negative samples randomly
obtained fromunseen pairs. The Humandatasetis constructed by ref.”,
including highly credible negative samples by aninsilico screening
method. Following previous studies''**°, we also use the balanced
version of Human dataset containing the same number of positive
and negative samples. To mitigate the influence of the hidden data
bias'®, we use additional cold pair split for performance evaluation
on the Human dataset. Supplementary Table 2 shows statistics of
the three datasets.

Implementation. DrugBAN isimplemented in Python 3.8 and PyTorch
1.7.1(ref. "), along with functions from DGL 0.7.1 (ref. **), DGL-lifeSci
0.2.8 (ref. *), Scikit-learn 1.0.2 (ref. **), Numpy 1.20.2 (ref. **), Pandas
1.2.4 (ref.*) and RDKit 2021.03.2 (ref.>®). The batch size is set to be 64
andthe Adam optimizeris used with alearning rate of Se-5. We allow the
modeltorunforatmost100 epochs for all datasets. The best perform-
ing modelisselected at the epoch giving the best AUROC score onthe
validation set, whichis then used to evaluate the final performance on
thetest set. The protein feature encoder consists of three 1D CNN layers
with the number of filters [128, 128, 128] and kernel sizes [3, 6, 9]. The
drugfeature encoder consists of three GCN layers with hidden dimen-
sions[128,128,128]. The maximum allowed sequence length for protein
issettobe 1,200, and the maximum allowed number of atoms for drug
moleculeis290.Inthe bilinear attention module, we only employ two
attention heads to provide better interpretability. The latent embed-
dingsize kis set to be 768, and the sum pooling window size sis 3. The
number of hidden neurons in the fully connected decoder is 512. Our
model performance is not sensitive to hyperparameter settings. The
configuration details and sensitivity analysis are provided in the Sup-
plementary Information, section 3. We also present ascalability study
inthe Supplementary Information, section 7.

Baselines. We compare the performance of DrugBAN with that of the
following five models on DTl prediction. Firstand second, two shallow
machine learning methods, SVM and RF, applied to the concatenated
fingerprint ECFP4 and PSC features. Third, DeepConv-DTI", which
uses CNN and one global max-pooling layer to extract local patterns
in protein sequence and a fully connected network to encode drug
fingerprint ECFP4. Fourth, GraphDTA", which models DTl using graph
neural networks to encode drug molecular graphs and CNN to encode
protein sequences. The learned drug and protein representation
vectors are combined with a simple concatenation. To adapt Graph-
DTA from the original regression task to a binary classification task,

we follow the stepsin earlier literature'*" to add a Sigmoid functionin
its last fully connected layer, and then optimize its parameters with a
cross-entropy loss. Fifth, MolTrans", adeep learning model that adapts
transformer architecture to encode drug and proteininformation and
uses a CNN-based interactive module to learn sub-structural interac-
tions. For the above deep DTI models, we follow the recommended
model hyperparameter settings described in their original papers.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Theexperimental data usedin thiswork are available at https://github.
com/peizhenbai/DrugBAN/tree/main/datasets. All data used in this
workare from public resources. The BindingDB** source canbe found
athttps://www.bindingdb.org/bind/index.jsp; the BioSNAP"*° source
canbefoundathttps://github.com/kexinhuangl2345/MolTrans/tree/
master/dataset/BIOSNAP/full_data and the Human® source used in a
previous study’® can be found at https://github.com/lifanchen-simm/
transformerCPI/blob/master/Human%2CC.elegans/dataset/human_
data.txt. The co-crystalized ligands from PDB*’ are available at https://
www.rcsb.org by searching their PDB IDs.

Code availability

The source code and implementation details of DrugBAN are freely
available at both GitHub repository (https://github.com/peizhen-
bai/DrugBAN) and CodeOcean capsule (https://doi.org/10.24433/
C0.3558316.v1)”". The code is also archived at Zenodo (https://doi.
org/10.5281/zenod0.7231657)%.
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