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1 Clustering-based pair split strategy10

As mentioned in the main text, we separately cluster drug compounds and target proteins of the BindingDB and BioSNAP11

datasets for cross-domain performance evaluation. Specifically, we choose the single-linkage clustering, a bottom-up hierarchical12

clustering to ensure that the distances between samples in different clusters are always larger than a pre-defined distance, i.e.,13

minimum distance threshold 𝛾 . This property can prevent clusters from being too close to help to generate the cross-domain14

scenario.15

We use binarized ECFP4 feature to represent drug compounds, and integral PSC feature to represent target proteins. For16

accurately measuring the pairwise distance, we use the Jaccard distance and cosine distance on ECFP4 and PSC, respectively.17

We choose 𝛾 = 0.5 in both drug and protein clusterings since this choice can prevent over-large clusters and be ensure separate18

dissimilar samples. We obtained 2,780 clusters of drugs and 1,693 clusters of proteins for the BindingDB dataset, and 2,38719

clusters of drugs and 1,978 clusters of proteins for the BioSNAP dataset. Table 1 shows the number of samples in the ten20

largest clusters of the clustering results. It shows that BindingDB has a more balanced cluster distribution than BioSNAP in21

drug clustering. In addition, the protein clustering result tends to generate many small clusters with only a few proteins in both22

datasets, indicating that the average similarity between proteins is lower than that between drugs. We randomly select 60% drug23

clusters and 60% protein clusters from clustering result, and regard all associated drug-target pairs with them as source domain24

data. The associated pairs in the remaining clusters are considered to be source domain data. We conduct five independent25

clustering-based pair splits with different random seeds for downstream model training and evaluation. Clustering-based pair26

split allows quantitatively constructing cross-domain tasks by considering the similarity between drugs or proteins.

Table 1. Size of the ten largest clusters in the BindingDB and BioSNAP datasets generated by the clustering-based pair split.

Dataset Object # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

BindingDB Drug 598 460 304 290 253 250 203 202 198 158
BioSNAP Drug 294 267 75 68 36 35 28 26 24 24
BindingDB Protein 17 15 15 12 10 10 10 9 9 8
BioSNAP Protein 8 8 8 6 5 4 4 4 4 4

27

2 Dataset statistics, notations, and preprocessing steps28

Table 2 shows the statistics of experimental datasets and Table 3 lists the notations used in this paper with descriptions. The29

BioSNAP and Human datasets were created by Huang et al. (2021)1 and Liu et al. (2015)2, respectively. For the BindingDB30

dataset, we created a low-bias version from the BindingDB database source3 following the bias-reducing preprocessing steps in31

our earlier work4: i) We considered a drug-target pair to be positive only if its IC50 is less than 100 nM, and negative only if its32

IC50 was greater than 10,000 nM, giving a 100-fold difference to reduce class label noise. These IC50 thresholds were selected33

following earlier works5, 6. ii) We removed all DTI pairs where the drugs only had one type of pairs (positive or negative) to34

improve drug-wise pair class balance and reduce hidden ligand bias that can lead to the correct predictions based only on drug35

features.36

Table 2. Experimental dataset statistics

Dataset # Drugs # Proteins # Interactions

BindingDB4 14,643 2,623 49,199
BioSNAP1 4,510 2,181 27,464
Human2 2,726 2,001 6,728

3 Hyperparameter setting and sensitivity analysis37

Table 4 shows a list of model hyperparameters and their values used in experiment. As our model performance is not sensitive38

to hyperparameter setting, we use the same hyperparamters on all experimental datasets (BindingDB, BioSNAP and Human).39

Figure 1 illustrates the learning curves with the different choices of hyperparameters on the BindingDB validation set, including40

bilinear embedding size, learning rate and heads of attention. It shows that the performance differences are not large and41

typically converges between 30 and 40 epochs.42
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Table 3. Notations and descriptions

Notations Description

𝐄𝑝 ∈ ℝ23×𝐷𝑝 protein amino acid embedding matrix
𝐟 ∈ ℝ𝐾∕𝑠 drug-target joint representation
𝐹 (⋅), 𝐺(⋅), 𝐷(⋅) feature extractor, decoder and domain discriminator in CDAN
𝐠 ∈ ℝ2 output interaction probability by softmax function
𝐇(𝑙)

𝑝 , 𝐇(𝑙)
𝑑 hidden representation for protein (drug) in 𝑙-th CNN (GCN) layer

𝐈 ∈ ℝ𝑁×𝑀 pair-wise interaction matrix between drug and protein substructures
𝐌𝑑 ∈ ℝΘ𝑑×74 drug node feature matrix by its chemical properties
𝑝 ∈ ℝ1 output interaction probability by Sigmoid function
 ,  protein amino acid sequence, drug 2D molecular graph
𝐪 ∈ ℝ𝐾 weight vector for bilinear transformation
𝐔 ∈ ℝ𝐷𝑑×𝐾 the weight matrix for encoded drug representation
𝐕 ∈ ℝ𝐷𝑝×𝐾 the weight matrix for encoded protein representation
𝐖𝑐 , 𝐛𝑐 the weight matrix and bias for protein CNN encoder
𝐖𝑔 , 𝐛𝑔 the weight matrix and bias for drug GCN encoder
𝐖𝑜, 𝐛𝑜 the weight matrix and bias for decoder
𝐗𝑝 ∈ ℝΘ𝑝×𝐷𝑝 latent protein matrix representation
𝐗𝑑 ∈ ℝΘ𝑑×𝐷𝑑 latent drug matrix representation
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Figure 1. Learning curves with the different choices of hyperparameters on the BindingDB validation set.

4 Performance comparison across different protein families43

We conduct experiments to study the performance of DrugBAN on different protein families. Following the previous studies1, 7,44

we select four major protein families: enzymes, G protein-coupled receptors (GPCRs), ion channels and nuclear hormone45

receptors (NHRs). We randomly retrieve one in-domain test set of BindingDB and BioSNAP respectively, and map their46

proteins to the four protein families using GtoPdb database (https://www.guidetopharmacology.org/targets.jsp). Table 5 presents47

the number of interactions for each protein family in the test sets. Figure 2 shows the performance (AUROC and AUPRC)48

varying only slightly given different protein families.49

5 Performance comparison on unseen drugs/targets50

To study how DrugBAN and other deep learning baselines perform on unseen drugs/targets, we conduct additional experiments51

on BindingDB and BioSNAP. For each dataset, we randomly select 20% drugs/target proteins. Then we evaluate predictive52

performance on all DTI pairs associated with these drugs/target proteins (70% as test set for evaluation and 30% as validation53

set for determining early stopping), and the rest pairs as training set for model optimization. Each unseen setting has five54
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Table 4. DrugBAN hyperparameter configuration

Module Hyperparameter Value

Optimizer Learning rate 5e-5
Mini-batch Batch size 64
Three-layer CNN protein encoder Initial amino acid embedding 128

Number of filters [128, 128, 128]
Kernel size [3, 6, 9]

Three-layer GCN drug encoder Initial atom embedding 128
Hidden node dimensions [128, 128, 128]

Bilinear interaction attention Heads of bilinear attention 2
Bilinear embedding size 768
Sum pooling window size 3

Fully connected decoder Number of hidden neurons 512
Discriminator Number of hidden neurons 256

Table 5. Number of interactions for major protein families in the test sets.

Dataset # Enzymes # GPCRs # Ion channels # NHRs

BindingDB 5,277 472 440 144
BioSNAP 1,956 536 510 103
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Figure 2. DrugBAN performance on different protein families. (a) AUROC curves on the BindingDB dataset. (b) AUPRC
curves on the BindingDB dataset. (c) AUROC curves on the BioSNAP dataset. (d) AUPRC curves on the BioSNAP dataset.
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Table 6. Performance (average AUROC over five random runs) comparison on the BindingDB and BioSNAP datasets with
random split, unseen drug, and unseen target settings (Best, Second Best).

Setting DeepConv-DTI8 GraphDTA9 MolTrans1 DrugBAN

BindingDB
Random Split 0.945±0.002 0.951±0.002 0.952±0.002 0.960±0.001
Unseen Drug 0.943±0.004 0.950±0.004 0.945±0.004 0.959±0.002
Unseen Target 0.627±0.070 0.670±0.023 0.661±0.037 0.692±0.038

BioSNAP
Random Split 0.886±0.006 0.887±0.008 0.895±0.004 0.903±0.005
Unseen Drug 0.856±0.005 0.858±0.007 0.856±0.008 0.886±0.005
Unseen Target 0.692±0.017 0.704±0.010 0.714±0.014 0.710±0.016

independent runs. Table 6 presents the AUROC results on the test sets, including the results on the usual random split for55

comparison. DrugBAN achieves the best performance in five of the six settings, while its performance in the unseen target56

setting of BioSNAP is also very competitive.57

We need to point out that the model performance under the unseen drug setting only dropped slightly compared to that58

under the random split for all methods on BindingDB. This is because there are many highly similar molecules in the DTI59

datasets, and naive unseen drug setting does not distinguish them. A better strategy is the clustering-based split strategy in our60

previous study to alleviate this issue, leading to a more challenging cross-domain task.61

6 Performance comparison with high fraction of missing data62

Table 7. Performance comparison (average AUROC over five random runs) on the BindingDB and BioSNAP datasets with
high fraction of missing data (Best, Second Best)

Missing (%) DeepConv-DTI8 GraphDTA9 MolTrans1 DrugBAN

BindingDB
95 0.773±0.005 0.831±0.002 0.846±0.004 0.856±0.003
90 0.840±0.002 0.867±0.002 0.874±0.003 0.887±0.004
80 0.877±0.002 0.897±0.003 0.905±0.001 0.920±0.003
70 0.890±0.005 0.916±0.002 0.923±0.001 0.934±0.001

BioSNAP
95 0.710±0.005 0.768±0.005 0.767±0.006 0.770±0.008
90 0.781±0.003 0.798±0.003 0.800±0.004 0.802±0.003
80 0.816±0.003 0.829±0.003 0.835±0.001 0.836±0.002
70 0.839±0.002 0.851±0.002 0.853±0.002 0.860±0.003

We conduct experiments to clarify how the proposed model performs with high fraction of missing data on BindingDB and63

BioSNAP. Following the missing data setting in MolTrans1, we train DrugBAN and deep learning baselines with only 5%, 10%,64

20% and 30% of each dataset, and evaluate predictive performance on the rest of data (90% as test set and 10% as validation65

set for determining early stopping). Table 7 presents the obtained results, showing DrugBAN has the best performance in all66

settings. In particular, the improvement is larger on the bigger dataset (BindingDB).67

7 Scalability68

We study the scalability of DrugBAN from three different perspectives: model optimization time, data loading time and GPU69

memory usage. We use the default hyperparameter configuration in Table 4, and a single Nvidia V100 GPU to train the model70

in 100 epochs. Figure 3a illustrates the model optimization time and data loading time against the number of DTI pairs for71

4,919 (10%) - 49,199 (100%) from the BindingDB dataset. We empirically observe that the optimization time (red line) of72

DrugBAN increases almost linearly with the number of DTI pairs. It takes about two hours for 49,199 DTI pairs to complete73

the optimization. The data loading process (blue line) takes more time than model optimization. Nevertheless, since the data74

loading can be done on CPU, we can accelerate the process with multiple loading workers (subprocesses) in parallel. Figure 3b75

shows the data loading time changes with respect to the number of workers, and it reduces significantly with only two additional76
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Figure 3. Scalability of DrugBAN on the BindingDB dataset (a) Model optimization and data loading time increase almost
linearly with the number of DTI pairs. (b) Data loading time significantly reduces with the increasing number of workers. (c)
Peak GPU memory usage increases linearly with the batch size.

workers added. Figure 3c shows the peak GPU memory usage against the batch size. We find that DrugBAN only takes up 4.6377

GB RAM with the default batch size 64, which is highly efficient. Similar to the optimization time, the memory usage also78

increases linearly with the batch size. This study demonstrates the scalability of DrugBAN.79
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