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ABSTRACT: A large number of protein−protein interactions
(PPIs) are mediated by the interactions between proteins and
peptide segments binding partners, and therefore determination of
protein−peptide interactions (PpIs) is quite crucial to elucidate
important biological processes and design peptides or peptidomi-
metic drugs that can modulate PPIs. Nowadays, as a powerful
computation tool, molecular docking has been widely utilized to
predict the binding structures of protein−peptide complexes.
However, although a number of docking programs have been
available, the systematic study on the assessment of their
performance for PpIs has never been reported. In this study, a
benchmark data set called PepSet consisting of 185 protein−
peptide complexes with peptide length ranging from 5 to 20
residues was employed to evaluate the performance of 14 docking programs, including three protein−protein docking programs
(ZDOCK, FRODOCK, and HawkDock), three small molecule docking programs (GOLD, Surflex-Dock, and AutoDock Vina), and
eight protein−peptide docking programs (GalaxyPepDock, MDockPeP, HPEPDOCK, CABS-dock, pepATTRACT, DINC,
AutoDock CrankPep (ADCP), and HADDOCK peptide docking). A new evaluation parameter, named IL_RMSD, was proposed to
measure the docking accuracy with f nat (the fraction of native contacts). In global docking, HPEPDOCK performs the best for the
entire data set and yields the success rates of 4.3%, 24.3%, and 55.7% at the top 1, 10, and 100 levels, respectively. In local docking,
overall, ADCP achieves the best predictions and reaches the success rates of 11.9%, 37.3%, and 70.3% at the top 1, 10, and 100
levels, respectively. It is expected that our work can provide some helpful insights into the selection and development of improved
docking programs for PpIs. The benchmark data set is freely available at http://cadd.zju.edu.cn/pepset/.

■ INTRODUCTION

Protein−protein interactions (PPIs) are involved in various
biological processes, and a significant number of PPIs are
mediated by the interactions between proteins and peptides.1 It
has been estimated that protein−peptide interactions (PpIs)
account for about 15−40% of the PPIs within the cell.1

Elucidating the structural details of protein−peptide complexes
is fundamental for the understanding of the molecular
mechanisms underlying protein−peptide recognition and the
development of peptide therapeutics. However, experimental
characterization of protein−peptide complex structures is
greatly impeded by the highly dynamic and transient nature of
PpIs. Therefore, as important alternatives to complement
experimental technologies, a variety of computational methods,
especially protein−peptide docking, have been developed to
predict the binding structures of protein−peptide complexes.
Current protein−peptide docking algorithms can be roughly

divided into two classes: template-based docking and template-
free docking.2 Template-based docking methods predict the
binding structures of protein−peptide complexes using the

structures of similar complexes as the templates, such as
GalaxyPepDock.3 Although several successes have been
achieved, templated-based docking methods suffer from the
limited known templates, thus resulting in an innate limitation
for general applications. In contrast, template-free docking does
not need any template, and it can be subdivided into global
docking and local docking on the basis of whether the binding
site is known or not. Global docking executes an exhaustive
search on the entire surface of the protein to capture the binding
site and binding mode of the peptide, such as pepATTRACT,4

MDockPeP,5 CABS-dock,6 ClusPro PeptiDock,7 PIPER-
FlexPepDock,8 and HPEPDOCK.9 However, local docking
searches the binding poses of the peptide around the user-
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defined binding site. The representative local docking methods
include AutoDock Vina (Vina),10 GOLD,11 Surflex-Dock
(Surflex),12 DynaDock,13 HADDOCK peptide docking (HAD-
DOCK),14 PEP-FOLD 3,15 DINC,16 and AutoDock CrankPep
(ADCP).17Moreover, it is warranted tomention that ADCP can
also handle the docking of the cyclic peptides.18

Although a number of docking programs have been
developed, there is still a lack of a systematic evaluation to
reveal the advantages and limitations of these docking programs
for protein−peptide systems. As far as we know, only two simple
comparative studies have been reported. Hauser and Wind-
shügel assessed four small molecule docking programs on the
basis of a data set that consists of 53 protein−peptide complexes
with the peptide length ranging from 3 to 12 residues.19 Agrawal
et al. evaluated five protein−protein docking programs and
pepATTRACT on the basis of 133 protein−peptide complexes
whose peptide lengths range from 9 to 15 residues.20 In both of
these studies, the evaluated docking programs only contained
one protein−peptide docking program, and the bound
structures were used in assessment. However, peptides are
usually docked to the unbound proteins in reality, and the
unbound proteins may undergo some conformational change
upon the peptide binding. Moreover, the initial peptide
conformations used in these two studies are the linear
conformations (backbone torsion angles of 180°) and cocrystal-
lized peptide structures. It is obvious that, considering the highly
dynamic nature of peptides and the limitation of sampling
algorithms, the initial peptide conformations have non-
negligible impacts on the prediction accuracy of protein−
peptide docking, especially rigid-body docking algorithms. Apart
from the evaluation based on the benchmark, CAPRI (Critical
Assessment of Predicted Interactions),21 the famous blind
assessment of protein−protein docking, also releases a number
of protein−peptide complexes. However, since 2013, only ten
protein−peptide targets (rounds 28, 29, 38, and 44) were
evaluated altogether, which cannot meet the demands of the

rapid development of protein−peptide docking algorithms.
Additionally, a number of groups introduced some customized
methods to optimize the docking results in CAPRI.22 However,
it is difficult for docking program end-users to implement these
customized methods. Thus, there is an urgent need to
comprehensively assess the performance of protein−peptide
docking algorithms on the basis of an extensive benchmark.
In this study, in order to systematically assess the performance

of docking programs, a large benchmark called PepSet
composed of 185 protein−peptide complexes with peptide
lengths ranging from 5 to 20 residues was constructed. A total of
14 docking programs including three for protein−protein
docking, three for small molecule−protein docking, and eight
for protein−peptide docking were evaluated on the basis of this
benchmark. Considering the remarkable influence of the initial
peptide conformations on docking performance, three initial
conformations (helical, extended, and polyproline II) were
generated for the docking programs that require the peptide
structures as the input. Besides, different from the common
evaluation metrics of the interface root-mean-square-deviation
(I_RMSD) or ligand RMSD (L_RMSD), a new evaluation
parameter named IL_RMSD was proposed and employed to
assess the performance of docking programs. Meanwhile, f nat,
the fraction of native contacts, was also used to assess the
prediction quality for the side chains of peptides. The overview
of this study is shown in Figure 1.

■ MATERIALS AND METHODS

Benchmark Data Set. PepSet was extracted from
PepBDB,23 which collected all the protein−peptide complexes
with peptide lengths up to 50 amino acids from the Protein Data
Bank.24 The extraction criteria are as follows: (1) the peptide
length ranges from 5 to 20 residues; (2) the resolution is≤2.0 Å;
(3) peptides do not contain any nonstandard amino acid; (4)
the sequence identity between any two protein monomers that
interact directly with peptides is <30%; (5) the bound structures

Figure 1.Overview of this study. For docking programs requiring the peptide structures as the input, three initial peptide conformations and unbound
proteins were used for docking. For the other docking programs, only the peptide sequence and unbound proteins were employed for docking.
Subsequently, the success rates of each programs were evaluated by IL_RMSD and f nat.
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have the corresponding unbound receptor structures and their
sequence identity is >90%; (6) the RMSD of the backbone
atoms of the residues in the bound structures within 10 Å from
the peptide and the corresponding residues in the unbound
structures is ≤2.0 Å. A total of 188 PDB entries were extracted
on the basis of these criteria. After we examined the unbound
and bound structures carefully, two complexes were removed
because some important residues around the binding sites in the
unbound structures were missing in the bound structures.
Another structure had several missing residues in the middle of
peptide that have not been resolved. At last, 185 out of the 188
complexes were incorporated into the final data set (Table S1
and Figure 2A,B). The benchmark data set is freely available at
http://cadd.zju.edu.cn/pepset/.
Benchmark Classification. In terms of the RMSD of the

backbone atoms between the conformation of the peptide in the

bound structure and its ideal extended or helical conformation,
PepSet was categorized into the following three levels.

(1) Easy: RMSDbound/helical or RMSDbound/extended ≤ 4 Å

(2) Medium: 4 Å < (RMSDbound/extended and RMSDbound/helical)
≤ 8 Å

(3) Difficult: (RMSDbound/helical > 8 Å and RMSDbound/extended
> 4 Å)OR (RMSDbound/helical > 4 Å and RMSDbound/extended
> 8 Å)

For example, a peptide whose RMSDbound/helical and
RMSDbound/extended are 5 Å at the same time can be classified as
the medium level. Accordingly, on the basis of these
classification criteria, all the complexes were divided into 132
easy, 28 medium, and 25 difficult ones (Figure 2A).

Structure Preparation. Since some protein−protein and
small molecule docking programs were adopted, the initial

Figure 2. (A) Distribution of the protein−peptide complexes grouped by peptide length and difficulty. (B) The box plot of the variation of the
maximum length, which includes the minimum, the first quartile (Q1), the sample median, the third quartiles (Q3) and the maximum. The minimum
and themaximum are the lowest and largest data points excluding outliers. If a data point is lower thanQ1− 1.5× IQR (IQR=Q3−Q1) or larger than
Q3 + 1.5× IQR, it will be plotted as an outlier. Themaximum length is themaximum value in ((xmax− xmin), (ymax− ymin), (zmax− zmin)). Here, x, y, and
z represent the atomic coordinates of the cocrystallized peptide in the three dimensions, respectively. The different colors are only used to distinguish
data.

Table 1. Overview of the 14 Assessed Docking Programs

program typea
required
inputb sampling algorithm scoring function

GalaxyPepDock Pp, T N/A (i) select templates based on structure and interaction
similarity; (ii) build model by energy-based
optimization

energy-based scoring function

ZDOCK PP, G Pc fast Fourier transform correlation algorithm shape complementarity, electrostatic potential, and knowledge-
based pair potentials

FRODOCK PP, G Pc spherical Fourier transform correlation algorithm van der Waals, electrostatic, and desolvation potentials and
knowledge-based pair potentials

HawkDock PP, G Pc ATTRACT: randomized search algorithm van der Waals, electrostatic, and desolvation potentials
MDockPeP Pp, G, L N/A modified version of Vina: iterated local search global

optimizer
ITScorePeP: statistical potential-based scoring function

HPEPDOCK Pp, G, L N/A modified version of MDOCK: an ensemble docking
algorithm

iterative knowledge-based scoring function

CABS-dock Pp, G N/A replica exchange Monte Carlo dynamics clustering-based scoring function
pepATTRACT Pp, G N/A ATTRACT: randomized search algorithm Lennard-Jones type potentials and electrostatics
GOLD SM, L Pc genetic algorithm GoldScore: protein−ligand hydrogen bond and van der Waals

energies, ligand internal van der Waals and torsional strain
energies

Surflex-Dock SM, L Pc incremental docking algorithm empirical Hammerhead scoring function
AutoDock Vina SM, L Pc iterated local search global optimizer empirical scoring function
DINC Pp, L Pc incremental docking algorithm based on AutoDock or

Vina
scoring function of AutoDock or Vina

AutoDock
CrankPep

Pp, L N/A CRANKITE: Metropolis Monte Carlo search CRANKITE’s Go̅-type potential, Ramachandran propensities,
and AutoDock affinity grids

HADDOCK
peptide docking

Pp, L Pc randomized search algorithm bond, angle, torsional angle, and electrostatic, van der Waals,
and desolvation potentials

aPp: protein−peptide docking. PP: protein−protein docking. SM: small molecule docking. G: global docking. L: locking docking. T: template-
based modeling. bN/A: programs do not require the initial peptide conformation as the input. Pc: programs require the initial peptide
conformation as the input.
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conformations of peptides need to be generated manually. Like
pepATTRACT,25 three idealized conformations for each
peptide were generated using the Python library PeptideBuild-
er.26 The backbone dihedral angles and conformation types were
set as follows.

(1) Helical conformation: φ = −57°, ψ = −47°
(2) Extended conformation: φ = −139°, ψ = −135°
(3) Polyproline II conformation: φ = −78°, ψ = 149°

Additionally, for the convenience of the determination of the
binding sites in local docking, each unbound structure was
aligned to the corresponding bound structure on the basis of the
residues in the bound protein within 10 Å from the peptide. All
nonstandard amino acids in the receptor proteins were modified
to standard ones.
Docking Protocol. In this study, 14 docking programs used

in protein−peptide docking evaluation were categorized into
three protein−protein docking programs, including ZDOCK
(version 3.0.2),27 FRODOCK (version 2.1),28 and Hawk-
Dock,29 three small molecule docking programs, including
GOLD (version 5.3.0),11 Surflex-Dock (version 4221),12 and
AutoDock Vina (version 1.1.2),30 and eight protein−peptide
docking programs, including GalaxyPepDock,3 MDockPeP,5

HPEPDOCK,9 CABS-dock,6 pepATTRACT,4 DINC (version
2.0),16 AutoDock CrankPep (ADCP, version 1.0),17 and
HADDOCK peptide docking.14 The features of the evaluated
docking programs are summarized in Table 1, and the key
parameter settings for each docking program are described as
follows.
GalaxyPepDock. The unbound structures and peptide

sequences were uploaded to the GalaxyPepDock server. Due
to the limit of protein and peptide lengths, 181 out of 185
complexes could be processed.
ZDOCK. The rotational sampling was set to 6 and the top 100

models for each peptide conformation were retained. In this
way, a total of 300 models were obtained and then the top 100
models were extracted according to the ZDOCK scores.
FRODOCK. The unbound structure and three peptide models

for each complex were first preprocessed by frodockgrid to
generate the potential maps, including the van der Waals,
electrostatic, and desolvation potential maps. Then, in the
docking and clustering stage, the threshold of the electrostatic
map was set to 10 and the maximum number of the clusters was
set to 100. Subsequently, the similar model selection strategy for
ZDOCK was adopted and the top 100 models were picked out
on the basis of the FRODOCK scores.
HawkDock. The unbound structure and three peptide

conformations for each complex were uploaded to the
HawkDock server. The default parameters of the HawkDock
server were used. As the maximal length of protein is limited to
1000 residues, 184 out of 185 complexes were docked
successfully. Then, similar to the model selection strategy for
ZDOCK, the top 100 models for each peptide conformation
were extracted in terms of the HawkDock scores.
MDockPeP. Both global docking and local docking are

supported by MDockPeP. In global docking, the unbound
structures and peptide sequences were uploaded to its server.
The number of the initial peptidemodels was set to 3. The cutoff
of the backbone RMSD was set to 5.5 Å. For docking with
standard accuracy (SA), the exhaustiveness value for sampling
was set to 100. For docking with high accuracy (HA),
considering the computational efficiency and the search
exhaustiveness for the peptides with different lengths, the

exhaustiveness value for peptides ranging from 5 to 10 residues
was still set to 100, but that for peptides with more than 10
residues increases by 10 for each additional residue. For
example, if the peptide contains 16 residues, the value of
exhaustiveness will be set to 160. In local docking, the grid box
was centered on the cocrystallized peptide ((xmin + xmax)/2, (ymin
+ ymax)/2, (zmin + zmax)/2). The size of the grid box was set to the
maximum value in ((xmax− xmin + 10), (ymax− ymin + 10), (zmax−
zmin + 10)). However, in the actual situations, such a precise size
of the grid box is unknown. Therefore, another strategy to
determine the size of the grid box based on the peptide length
was also adopted by us. The length of the three sides of the grid
box was set to (peptide length ×3.8) Å. The value of 3.8
represents the distance between two adjacent Cα atoms. The
other parameters for the local docking were identical to those
used in the global docking, except that the parameters of HA
were not employed for the local docking whose size of the grid
box depended on the peptide length. Since the allowed sizes of
protein are 31−1000 residues, 183 out of 185 complexes were
calculated successfully.

HPEPDOCK. In global docking, the unbound structures and
peptide sequences were uploaded to its server and no parameters
needed to be set additionally. In local docking, the binding site
was defined as the residues within 5 Å from the peptide.

CABS-Dock. The unbound structures and peptide sequences
were uploaded to the CABS-dock server. For docking with SA,
the value of the simulation cycles was set to 50. For docking with
HA, similar to MDockPeP, for the peptides with more than 10
residues, the value of the simulation cycles increases by 10 for
each additional residue and the value of the other peptides was
still set to 50. Themaximum protein size supported by the server
is limited to 500 residues and hence only 173 out of 185
complexes were handled. Moreover, only the top 10 clustering
models were assessed by us.

pepATTRACT. Similar to the global docking in the
HPEPDOCK server, the pepATTRACT server merely requires
the unbound structures and peptide sequences. However, only
184 out of 185 complexes were processed successfully.

GOLD. The definition of the binding site was the same as that
employed in HPEPDOCK. The search efficiency of the genetic
algorithm was set to “automatic” and the option of “early
termination” was switched off. The docking poses were ranked
only by the GoldScore scoring function, which performed the
best in the LEADS-PEP benchmark.19 The number of “GA runs”
was set to 20 (SA) and (peptide length×10) (HA), respectively.
Then, according to GoldScore, the conformations for each
peptide were collected and reranked.

Surflex-Dock. The protomol file was created on the basis of
the cocrystallized peptide and unbound structures using the
“proto” mode. The docking calculation was conducted with the
“-pgeom” mode. On the basis of the Surflex-Dock scores, the
models for the three peptide conformations were collected and
reranked.

AutoDock Vina. AutoDock-Tools 1.5.6 was utilized to
preprocess the unbound structure and three peptide con-
formations for each complex. The center of the binding site was
the same as that of MDockPeP. The size of the grid box was set
to (xmax − xmin + 10) Å × (ymax − ymin + 10) Å × (zmax − zmin +
10) Å. Moreover, the definition of the binding site based on the
peptide length used in MDockPeP was also applied in Vina.
Then, the exhaustiveness values were set to 8 (SA) and 100
(HA). Finally, a total of 60 models for each complex were saved
and reranked.
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DINC. Both the sampling method and scoring function in
Vina were employed byDINC. The definition of the binding site
was also identical to that used in Vina. The value of
“num_output” was set to “all”, which means that all the
conformations generated by DINC will be returned without
clustering. Besides, the values of exhaustiveness and “energy_r-
ange” were set to 8 and 3, respectively. The other parameters
were set to default. Finally, 183 out of 185 complexes were
predicted successfully and the models for the three peptide
conformations were merged and reranked according to the Vina
scores.
AutoDock CrankPep (ADCP). The docking calculation was

executed within a 4 Å padding on every side of the cocrystallized
peptide. The value of replicas was set to 80, which consists of 20
simulations started from the helical conformation and 60
simulations started from the extended conformation. Three
million Monte Carlo steps per residue in the peptide were
performed for each replica. Then, the docking poses were
clustered and the RMSD cutoff was set to 2.5 Å. Additionally,
another definition of the binding site based on the peptide length
was also utilized in ADCP. The definition approach was the
same as MDockPeP.
HADDOCK Peptide Docking. The unbound structure and

three peptide conformations for each complex were uploaded to
the expert mode of the HADDOCK server.31 The active and
passive residues were defined as the residues within 5 Å from the
protein and peptide residues, respectively. Moreover, the
peptides were docked in the fully flexible way. The numbers of
the structures for the rigid body docking, semiflexible refinement
and explicit solvent refinement were set to 2000, 400 and 400,
respectively. In the clustering stage, the RMSD cutoff for
clustering and the minimum cluster size were set to 5 Å and 4,
respectively. Finally, according to the HADDOCK scores, the

clustered models for the three peptide conformations were
collected and reranked.

Evaluation Metrics. The quality of a predicted protein−
peptide model was measured by its RMSD of the ligand in the
interface (IL_RMSD) and fraction of native contacts ( fnat).
IL_RMSD was calculated on the basis of the backbone atoms of
the peptide residues within 10 Å from the protein after the
optimal superimposition of the protein residues within 10 Å
from the peptide. The RMSD calculation was executed using the
ProFit program.32 Additionally, in order to further assess the
side-chain quality, f nat, the fraction of native contacts between
the protein and peptide, is also employed for the assessment.
Two residues in the protein and peptide are defined as a contact
if any of their heavy atoms are within 4 Å. The criteria for
assessment are summarized as follows.

(1) Near-native prediction: IL_RMSD ≤ 4 Å and f nat ≥ 0.2
(peptide length ≤10); IL_RMSD ≤ 5 Å and f nat ≥ 0.2
(peptide length >10)

(2) Medium-quality prediction: IL_RMSD ≤ 3 Å and f nat ≥
0.5

(3) High-quality prediction: IL_RMSD ≤ 2 Å and f nat ≥ 0.8

Thus, the success rate, defined as the percentage of the cases
with at least one near-native prediction within the topNmodels,
was utilized to assess the performance of docking programs. For
example, if the near-native conformations for 74 complexes out
of 185 complexes can be found in the top 100 predictions, the
success rate at the top 100 level is 74/185 = 40%.

■ RESULTS AND DISCUSSION
Comparison of IL_RMSD with I_RMSD and L_RMSD.

Generally, two kinds of RMSDs, including I_RMSD and
L_RMSD, have been used as the criterion to evaluate the
quality of the predicted models. I_RMSD is calculated between

Figure 3. Four examples of the comparison of IL_RMSD with I_RMSD or L_RMSD. The cocrystallized peptide and bound protein structures are
colored green and cyan, respectively. The unbound protein structures are colored yellow. The proteins and peptides are illustrated by the ribbon and
cartoon, respectively. (A) The red and blue peptides represent the predicted model with I_RMSD= 0.936 Å and I_RMSD = 1.953 Å, respectively. (B)
The yellow end represents the residues beyond 10 Å away from the bound protein. Superposition of (C) the entire structures and (D) the binding sites
of the bound and unbound proteins, and the red peptide represents the predicted model generated by HADDOCK. The red arrows show the position
of peptides.
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the predicted model and the experimental structure on the basis
of the backbone atoms of the peptide and protein residues
within 10 Å of the partner molecules.33 However, in order to
reduce the difficulty of docking, only the RMSD of the binding
sites between the unbound and bound structures within 2 Å was
collected into our benchmark. Therefore, the effect of peptide
deviation will be partially impaired by the good superimposition
of the interface residues between the unbound and bound
proteins in the I_RMSD calculation, especially for short
peptides, because the number of the interface residues of the
protein is much more than that of the peptide residues. For
clarifying this situation, two near-native models for the 5E33
complex34 based on the criterion of I_RMSD were generated by
HPEPDOCK with I_RMSD = 1.953 Å (IL_RMSD = 9.270 Å,
f nat = 0.269) and I_RMSD = 0.936 Å (IL_RMSD = 3.946 Å, f nat
= 0.692), respectively. Generally, if the I_RMSD between a
predicted model and its crystal structure is≤2 Å, this model will
be considered as a near-native prediction.14 Whereas, as shown
in Figure 3A, the peptide with I_RMSD = 1.953 Å is not
supposed to be regarded as a near-native prediction and only the
peptide with I_RMSD = 0.936 Å is close to the cocrystallized
peptide. Furthermore, the difference of the I_RMSDs between
these two peptides is about 1 Å, which is quite small. But through
the IL_RMSD by excluding the protein residues in the

calculation, only the peptide with I_RMSD = 0.936 Å
(IL_RMSD = 3.946 Å) is regarded as a near-native prediction
and the difference of the IL_RMSDs between these two
peptides reaches 5.3 Å. Thus, IL_RMSD is a better criterion
than I_RMSD in this benchmark.
L_RMSD is calculated on the basis of the backbone atoms of

the peptide after the optimal superimposition between the
bound and unbound protein structures. But as to some long
peptides, it might bring some errors due to the calculation of the
RMSD of the entire peptide. Taking 2KOH as an example
(Figure 3B),35 the residues colored yellow in the end of the
peptide are far from the protein, whose conformations are highly
dynamic and unstable. The value of L_RMSD will increase a lot
if these residues are considered in the RMSD calculation.
However, the binding free energy of PpIs is mainly contributed
by some key residues of the peptide that are definitely near the
protein.36 As for IL_RMSD, only the peptide residues within 10
Å from the protein are calculated, which can avoid this situation.
Moreover, in some proteins, the entire structures of the bound
and unbound proteins are quite different, but the structures of
their binding sites are similar. As for L_RMSD, the whole
protein structures are superimposed before calculation, which
will cause some calculation errors to these proteins. For 2KA9 as
displayed in Figure 3C,37 the predicted peptide is quite different

Figure 4. Success rates of global (A−C) and local (D−F) docking programs in the top N predictions for the entire data set.
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from the cocrystallized peptide when the entire structures of the
bound and unbound proteins are superimposed. Actually, Figure
3D indicates that the binding sites can be well superimposed and
the predicted model is supposed to be a near-native prediction.
Nevertheless, this error can be avoided if IL_RMSD is used as
the criterion because it calculates the RMSD of peptide after the
optimal superimposition of the binding site. In summary,
IL_RMSD is a better criterion than L_RMSD in the
performance evaluation of protein−peptide docking algorithms.
Evaluation of All Docking Programs on the Entire Data

Set. Figure 4 shows the success rates of the tested global and
local docking programs on the entire data set and the detailed
results are summarized in Tables S2 and S3. GalaxyPepDock, the
template-based docking approach, performs significantly better
than any template-free docking method on the PepSet
benchmark. Thus, it is regarded as the target of the performance
improvement for the template-free docking methods used in the
benchmark.
For global docking, as shown in Figure 4A, HPEPDOCK

performs the best with the success rates of 4.3%, 24.3%, and
55.7% at the top 1, 10, and 100 levels, respectively, followed by
CABS-dock_SA, CABS-dock_HA, MDockPeP_SA, MDockPe-
P_HA, FRODOCK, pepATTRACT, HawkDock, and ZDOCK.
For pepATTRACT, FRODOCK, HawkDock, and ZDOCK,

only the three idealized conformations for each peptide were
docked by the rigid-body docking algorithms, and hence the
peptide flexibility cannot be handled well. In contrast, the
peptide flexibility can be efficiently considered by HPEPDOCK
through an ensemble docking algorithm,9 CABS-dock with the
Replica Exchange Monte Carlo dynamics,6 and MDockPeP
using a modified version of AutoDock Vina in the sampling
stage.5 Additionally, the number of the initial peptide
conformations docked by HPEPDOCK reaches up to 1000,9

which may be one of the most critical factors for the high success
rate of HPEPDOCK. Besides, it can be observed from Figure 4B
that the quality of the predictions generated by HPEPDOCK is
also notably better than any other methods, suggesting that
docking with a variety of initial peptide conformations should be
a promising strategy to improve the docking accuracy.
Furthermore, HPEPDOCK is more computationally efficient
than CABS-dock and MDockPeP. However, as shown in Figure
4C, all methods cannot provide good results in the high-quality
prediction.
Figure 4D indicates that, for local docking, ADCP achieves

the best predictions with the success rates of 11.9%, 37.3%, and
70.3% at the top 1, 10, and 100 levels, respectively. The
performance of the other docking programs follows the
following order: GOLD_HA > MDockPeP_SA (local) ≈

Figure 5. Success rates of global (A−C) and local (D−F) docking programs in the top N predictions for the easy, medium, and difficult subsets.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01208
J. Chem. Theory Comput. 2020, 16, 3959−3969

3965

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01208/suppl_file/ct9b01208_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01208?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01208?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01208?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01208?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01208?ref=pdf


MDockPeP_HA (local) > HADDOCK > GOLD_SA > Surflex
≈ Vina_SA > HPEPDOCK (local) > DINC > Vina_HA.
Besides, as illustrated in Figure 4E,F, ADCP also shows better
performance than the other local docking algorithms. Generally,
compared with global docking, local docking gives remarkably
better predictions when a precise binding site is provided. To
our surprise, HPEPDOCK (local) performs worse than
HPEPDOCK (global) in our benchmark, which is probably
caused by the difference between the binding sites of the
unbound and bound structures that makes some specified
interface residues mislead the sampling of peptide conforma-
tions. Among the three small molecule docking programs,
GOLD achieves significantly better predictions than Vina and
Surflex, even better than most protein−peptide docking
algorithms, which is consistent with the evaluation results on a
small molecule data set that GOLD supported by the genetic
algorithm has the best sampling power.38

To investigate the effect of peptide flexibility, the benchmark
data set was classified into the easy, medium, and difficult
subsets. The results are shown in Figure 5. Overall, as the
peptide flexibility increases, the performance of the docking
programs gradually decreases. In global docking, similar to the
results of the entire data set, as shown in Figure 5A−C,

HPEPDOCK is quite robust and displays the best performance
for all the three subsets. The limitations of pepATTRACT,
FRODOCK, HawkDock, and ZDOCK in handling peptide
flexibility are revealed by the predictions on the medium and
difficult subsets. In local docking, as shown in Figure 5D−F,
ADCP performs the best for the easy subset, with the success
rates of 13.6%, 45.5%, and 77.3% at the top 1, 10, and 100 levels,
respectively. However, as for themedium subset, it is defeated by
GOLD_HA which reaches the success rates of 7.2%, 42.9%, and
71.4% at the top 1, 10, and 100 levels, respectively. As for the
difficult subset, MDockPeP_SA achieves the best predictions
and the success rates at the top 1, 10, and 100 levels are 8.0%,
24.0%, and 52%, respectively.
Then, we analyzed the failure cases containing a total of seven

structures that cannot be predicted successfully by any docking
program, including 1CQG,39 1VPP,40 2V8C,41 4MVI,42

4OUC,43 5TGI, and 6F6D.44 The first reason for prediction
failure may be explained by the peptide flexibility. The peptides
in 2V8C, 4MVI, 4OUC, 5TGI, and 6F6D bind to the proteins
with the “U” or “L” shape, and the docking programs may be not
powerful enough to sample such complicated conformations.
Second, some peptide residues in 1CQG, 1VPP, and 5TGI are
far from the proteins. However, docking programs always try to

Figure 6. Success rates of global (A−C) and local (D−F) docking programs in the top N predictions for the different peptide length subsets. (A, D)
The results of MDockPeP_SA and MDockPeP_HA on the 11−15 subset are identical and thus both of them are colored red.
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find the peptide conformations that can form compact contacts
with proteins, which may trap them into incorrect zones.
Effect of Peptide Length on the Performance of

Docking Programs. To further investigate the impact of
peptide length on the prediction of the binding modes of
protein−peptide complexes, the entire data set was grouped into
three subsets with different peptide lengths, i.e., 5−10, 11−15,
and 16−20 residues. In global docking, as shown in Figure 6A−
C, HPEPDOCK achieves the best predictions for all the three
subsets and yields the success rates of 6.4%, 27.7%, and 61.7%
for the 5−10 subset, 3.3%, 21.3%, and 50.8% for the 11−15
subset and 0%, 20.0%, and 46.7% for the 16−20 subset at the top
1, 10, and 100 levels, respectively. Moreover, CABS-dock_SA
also achieves good predictions on the 11−15 and 16−20 subsets.
However, application of the high accuracy settings for CABS-
dock does not improve its performance. For MDockPeP,
MDockPeP_SA andMDockPeP_HA perform slightly better on
the 11−15 and 16−20 subsets, respectively.
In local docking, as shown in Figure 6D−F, ADCP,

GOLD_HA, and MDockPeP achieve the best performances
on the 5−10, 11−15, and 16−20 subsets, respectively. With the
high accuracy settings, the performance of GOLD on the long
peptides is improved significantly and it achieves the success
rates of 13.1%, 37.7%, and 73.8% on the 11−15 subset at the top
1, 10, and 100 levels, respectively. However, as peptides become
longer, its performance drops a lot, which shows the limitation of
small molecule docking programs for long peptides. In contrast,
the performances of ADCP andMDockPeP aremore robust. On
the 16−20 subset, MDockPeP_SA and MDockPeP_HA yield

the best predictions at the top 1−30 and top 30−100 levels,
respectively.

Impact of the Size of the Binding Site on the
Performance of AutoDock or Vina-Based Docking
Programs. In local docking, it is difficult to define an exact
binding site for peptides, especially for long peptides. As shown
in Figure 2B, when the peptides contain more than 10 residues,
large difference between the minimum and maximum can be
observed and there are four outliers. Taking the peptides with 12
residues as an example, the minimum and maximum values are
18.1 and 37.4 Å, respectively. Furthermore, for the peptides with
19 residues, its outlier reaches 47.5 Å, but its minimum is only
27.1 Å. In a word, the significant fluctuation of the maximum
peptide length highlights the difficulty in determining the size of
the binding site. Moreover, generally only the information about
several key protein residues interacting with peptides is available.
Therefore, the influence of the size of the binding site was then
evaluated for AutoDock or Vina-based docking programs,
including Vina, DINC,MDockPeP and ADCP. As the size of the
binding sites was unknown, the determination based on the
peptide length was adopted.
As shown in Figure 7, compared with the results of the size of

the binding sites defined by the cocrystallized peptides, the
success rates of most docking programs drop remarkably on the
entire data set. The detailed results are listed in Table S4. Then,
the effect of the size of the binding sites on different peptide
length data sets is also analyzed. Overall, with the increase of the
peptide length, the performance of all docking programs
decreases significantly. Figure 7 demonstrates that, for the 5−

Figure 7. Success rates of the AutoDock or Vina-based docking programs within the topNmodels for the two different definitions of binding sites. The
“site” suffix represents the prediction results for the binding sites defined by the peptide length.
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10 subset, the performance of MDockPeP and Vina_100 is
unchanged but the other methods decline a bit, especially for
ADCP. For the 11−15 and 16−20 subsets, the performance of
all the docking programs drops a lot, notably for the 16−20
subset whose binding sites usually cover large areas of protein
surfaces, sometimes even the whole proteins, whichmay account
for the low success rates. Therefore, when AutoDock or Vina-
based docking programs are utilized to dock long peptides, we
are supposed to define the binding site more precisely.

■ CONCLUSION

In the present study, an extensive benchmark data set
incorporating 185 complexes with peptide length ranging from
5 to 20 residues was constructed. Based on PepSet, IL_RMSD, a
new assessment criterion, proposed by us, was utilized to
evaluate 14 docking programs with f nat. The evaluation
conclusions can be summarized as follows. (1) Overall,
protein−peptide docking algorithms achieve better performance
than protein−protein and small molecule docking algorithms.
Moreover, docking with diverse initial peptide conformations is
a vigorous strategy to improve the docking performance. (2) In
global docking, HPEPDOCK shows the best performance. (3)
In local docking, ADCP performs the best on the entire data set.
As for the performances on the different peptide length subsets,
ADCP, GOLD_HA, and MDockPeP yield the best predictions
for the 5−10, 11−15, and 16−20 subsets, respectively. (4) The
size of the binding site will affect the performance of AutoDock
or Vina-based docking programs, and hence we should pay
attention to the settings of the binding site.
All in all, prediction of the binding modes between proteins

and peptides with large conformational changes still remains a
challenge. We expect that our work could provide some valuable
clues to the selection and development of improved protein−
peptide docking algorithms.
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