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Abstract
Motivation: Peptides and their derivatives hold potential as therapeutic agents. The rising interest in developing peptide drugs is evidenced by 
increasing approval rates by the FDA of USA. To identify the most potential peptides, study on peptide-protein interactions (PepPIs) presents a 
very important approach but poses considerable technical challenges. In experimental aspects, the transient nature of PepPIs and the high flexi
bility of peptides contribute to elevated costs and inefficiency. Traditional docking and molecular dynamics simulation methods require substan
tial computational resources, and the predictive accuracy of their results remain unsatisfactory.
Results: To address this gap, we proposed TPepPro, a Transformer-based model for PepPI prediction. We trained TPepPro on a dataset of 
19,187 pairs of peptide-protein complexes with both sequential and structural features. TPepPro utilizes a strategy that combines local protein 
sequence feature extraction with global protein structure feature extraction. Moreover, TPepPro optimizes the architecture of structural featur
ing neural network in BN-ReLU arrangement, which notably reduced the amount of computing resources required for PepPIs prediction. 
According to comparison analysis, the accuracy reached 0.855 in TPepPro, achieving an 8.1% improvement compared to the second-best 
model TAGPPI. TPepPro achieved an AUC of 0.922, surpassing the second-best model TAGPPI with 0.844. Moreover, the newly developed 
TPepPro identify certain PepPIs that can be validated according to previous experimental evidence, thus indicating the efficiency of TPepPro to 
detect high potential PepPIs that would be helpful for amino acid drug applications.
Availability and implementation: The source code of TPepPro is available at https://github.com/wanglabhku/TPepPro.

1 Introduction
Peptide-protein interactions (PepPIs) refer to interactions be
tween proteins and peptide molecules that are ubiquitous in 
living organisms and involved in many biological processes. 
The specificity and biological activity of peptides make them 
a good starting point for new treatments. Identifying accurate 
PepPIs is critical to the invention of such treatments, but de
termining PepPIs experimentally is often time-consuming and 
expensive. Predicting whether they have interactions is of 
great significance for the development of peptide drugs. To 
address this problem, numerous computational methods have 
been developed to predict the relationship between proteins 
and peptides (Cunningham et al. 2020).

Recently, rapidly developing deep learning techniques have 
provided viable solutions for modelling protein-ligands or 
protein–protein interactions (PPIs) with better accuracy while 
requiring fewer computational resources (Liu et al. 2018, 
Tang et al. 2023, Yang et al. 2023a). However, the advance
ment in machine learning has not yet significantly impacted 
PepPI research. To date, in silico research targeting peptides 
has primarily focused on peptide-protein docking or molecu
lar dynamic simulations (Keeble et al. 2019, Lee et al. 2019, 
Johansson-Åkhe et al. 2020, Sunny and Jayaraj 2022). 
Predictions based on conventional docking have been 
reported to fail biologically activity tests (Cole et al. 2005, 
Ram�ırez and Caballero 2016). Previous studies have utilized 
machine learning methods that widely applied in vision tasks 
to construct PepPI models, such as Convolutional Neural 
Network (CNN) (Ballester and Mitchell 2010, Yin et al. 
2023). However, in terms of PepPIs, features include not only 
structural but also sequential.

Fortunately, artificial intelligence models have experienced 
rapidly updated in recent years (Sinha et al. 2023, Yang et al. 
2023b, Li et al. 2024). The advantage of Transformer in 
amino acid sequence analysis is its ability to capture long- 
distance dependencies and to effectively handle long sequence 
data. Meanwhile, through the self-attention mechanism, it 
can automatically learn the important features in the sequen
ces and improve the prediction performance. Here, we em
ploy a transformer-based model with enhanced capability to 
comprehend contextual information in protein sequences and 
to construct more accurate and reliable PepPI prediction 
models. Moreover, in our study, we paid special attention to 
whether the prediction results could be experimentally 

validated. Despite the need for further experimental confir
mation, we still find experimental evidence beyond the scope 
of the training and testing sets to confirm the effectiveness of 
the TPepPro model in practical applications.

Although there are growing interests in making peptide 
drugs and increasing number of approved peptide therapies, 
only a handful of work has been proposed to utilize machine 
learning or deep learning-based methods to model PepPIs. 
Hence, there is a pressing need for more advanced machine 
learning or deep learning-based models with superior effi
ciency for discovering PepPIs, specifically tailored for predict
ing PepPIs. In this study, we propose a novel model named 
TPepPro, that combines features extracted from both local 
protein sequences and global protein structures. The TPepPro 
system optimizes the architecture of structural featuring neu
ral network with BN-ReLU (Batch Normalization—Rectified 
Linear Unit). We applied a 5-fold cross-validation to evaluate 
the performance of TPepPro as compared with other models, 
including PIPR (Chen et al. 2019), SCNN (Wang et al. 2019), 
and TAGPPI (Song et al. 2022). Our findings show an en
hanced prediction accuracy of 0.855, a notable improvement 
over TAGPPI, the second-best model which achieved 0.774, 
and an increase of 8.1%. More importantly, the TPepPro 
method can identify PepPIs, consistent with those validated in 
previous experiments. Therefore, these findings demonstrate 
the superior ability of our method to discover potential PepPIs 
that would be helpful for amino acid drug applications.

2 Materials and methods
2.1 Workflow of TPepPro
The TPepPro model proposed in this study uses an end-to-end 
deep learning method. There are four modules in TPepPro 
(Fig. 1): (i) Data pre-processing: Protein sequences are proc
essed by ProtTrans, which is based on the Transformer archi
tecture. This model has proven to be an excellent model on 
encoding the syntax and semantics of protein sequences 
(Elnaggar et al. 2022). The highest performance model of 
ProtTrans, ProtT5_XL_half_UniRef50-enc, is utilized in this 
pipeline. Structural features are encoded as contact map. (ii) 
Extracting local features of protein sequences using TextCNN 
(Kim 2014). (iii) Extracting protein structural features using 
TAGCN (Du et al. 2018). Compared with the original GCN, 
TAGCN is chosen for its better performance and accuracy as 
it uses a set of filters that are specific for each node. (iv) 
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Prediction Model. In the training module, the Batch 
Normalization layer was placed prior to the ReLU layer (Ioffe 
and Szegedy 2015). This is because the BN layer can make the 
mean of the input values to be 0 and the variance to be 1, alle
viating the problem of vanishing gradient of the ReLU func
tion to a certain extent. This setting helps to keep the gradient 
passing efficiently while training the neural network, and to 
improve the performance (Garbin et al. 2020).

2.2 Data collection
Five datasets are utilized in this study (Supplementary Table 
S1), comprising: (i) The protein-peptide complex dataset 
Propedia v2.3 (Martins et al. 2023); (2) The human protein 
dataset DIP (Zhao et al. 2022); (3) The yeast protein dataset 
(Salwinski et al. 2004); (4) The neocoronavirus-human pro
tein dataset (Yang et al. 2021). (v) The HIV-human protein 
dataset (Yang et al. 2021). The protein-peptide complex 
dataset from Propedia v2.3 serves as the primary dataset in 
this research.

2.3 Data pre-processing
Developed by DeepMind Google, ProtTrans uses the self- 
attention mechanism optimized for understanding the syntax 
and semantics of protein sequences (Elnaggar et al. 2022). 
ProtT5-XL-UniRef50 is chosen here for representing proteins 
with vectors as it was the best performance among ProtTrans 
models. To speed this step up, the model’s half-precision 
mode is turned on, namely, ProtT5-XL-half-UniRef50-enc. It 
was verified by Elnaggar et al. that this modification does not 
compromise the performance.

As shown in Fig. 2, we firstly tokenize and encode the in
put protein sequences. The encoded vectors are piped into 

ProtT5-XL-half-UniRef50-enc model, creating context-aware 
embeddings for each token. The vector representation of the 
protein is therefore obtained with the output being 
X 2 RL×1024. L represents the number of amino acids of the 
input protein.

2.4 Strategy of extracting local feature of 
protein sequence
This research adopts a TextCNN module for extracting local 
sequence features of proteins (Zhao et al. 2022). The module 
consists of three CNN layers and three max pooling layers. 
This structure is designed to achieve effective feature extrac
tion and classification of protein sequences through the com
bination of CNNs and max pooling layers, while ensuring 
computational efficiency and robustness at the same time. 
Detailed extraction process is described below:

Firstly, ProtT5-XL-half-UniRef50-enc model is used to en
code protein sequences into vector representations, denoted 
as X 2 RL×1024. Next, to ensure a fixed output vector size for 
the TextCNN module, the maximum length of the protein 
sequence L is set to be 1200. When a protein sequence is less 
than 1200 in length, a zero-padding approach would be 
applied to complement the sequence to fit 1200. Therefore, 
the formatted vector as X 2 R1200×1024 is adopted as further 
input of TextCNN.

The first convolutional layer of TextCNN has 128 output 
channels and a convolutional kernel size of 3. The output 
feature map has a size of 1198×128. This feature map was 
then fed into a maximum pooling layer with a step size of 3, 
resulting in another feature map of the protein with a size of 
399×128. The processes mentioned above are repeated 
twice. Eventually, local feature vectors of size Fs1 2 R1×128 

Figure 1. Architecture of TPepPro. (1) Data preprocessing: The amino acid sequences corresponding to proteins and peptides are encoded as vectors of 
size L× 1024. Here, L represents the length of the protein/peptide amino acid sequence, and 1024 denotes that each amino acid is encoded into a vector 
of 1024 dimensions. Additionally, distances between residues in the PDB-format protein and peptide structure files are calculated to obtain the contact 
map files of proteins and peptides. (2) TextCNN module is utilized to extract local sequence features of proteins and peptides. (3) Extraction of protein and 
peptide structural features: The TAGCN module is used to extract structural features through the contact map files of proteins and peptides. (4) Prediction 
module: Finally, the local sequence features and structural features of the given protein-peptide pairs obtained from the above steps are fused before being 
input into the prediction module. The generated prediction results undergo a sigmoid activation function for nonlinear transformation, resulting in an output 
between 0 and 1. Based on a set threshold, here set as 0.5, the presence of interaction in the input peptide-protein pairs is determined. Pairs with output 
results greater than or equal to 0.5 are considered to have interaction; pairs with output results less than 0.5 are deemed to have no interaction.
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and Fs2 2 R1×128 will be output from TextCNN module as 
the protein sequence features.

2.5 Extracting protein structure features
Protein structural features are extracted through the construc
tion of a protein’s contact graph. First, a contact graph file of 
the protein is constructed based on its structure file (PDB file). 
Bio.PDB, a module in the BioPython package, is used to pro
cess protein structure files in PDB format and calculate distan
ces between residues (Hamelryck and Manderick 2003). The 
contact graph is square shaped with dimensions L×L. From 
this contact graph, we derive the Adjacency Matrix A and the 
Node Feature Matrix X. The adjacency matrix, denoted as 
A 2 RL × L, represents connections between nodes. A value 
of 0 indicates no connection between two nodes, while a value 
of 1 indicates the presence of a connection. The node feature 
matrix, represented as X 2 RL×1024, consists of feature vectors 
of 1024 dimensions for each node.

Subsequently, the obtained adjacency matrix A and the 
node feature matrix X are input into the TAGCN layer, a 
variant of GCN. Traditional GCN sets K¼1 after approxi
mating filters with Chebyshev polynomials, while TAGCN 
employs K filters to extract local features of varying sizes, 
with K serving as a hyperparameter. K varies among filters, 
ranging from 1 to K, akin to GoogleNet’s filters. The convo
lution process of TAGCN is demonstrated as follows:

Here, the graph convolution on the first hidden layer is 
demonstrated as an example, with the resulting pattern appli
cable to any other hidden layers. In this demonstration, it is 
assumed that Cl features are mapped to each node. 
Subsequently, the adjacency matrix underwent self-looping 
and normalization: 

A ¼ D�
1
2 �AD�

1
2 : (1) 

GðlÞc;f 2 RNl×Nl denote the form of fth graph filter. The con
volution of a graph is the product of a matrix and a vector, 

namely, GðlÞc;f x
ðlÞ
c . Therefore, the output feature map after the 

fth map filter is: 

y lð Þ
f ¼

XCl

c¼1

G lð Þ
c;f x

lð Þ
c þb lð Þ

f 1Nl : (2) 

In form (2): GðlÞc;f ¼
PK

k¼0 gðlÞc; f ;kAk. gðlÞc;f ;k represents the 

graph filter polynomial coefficients. bðlÞf is the learnable bias. 
1Nl means all elements of the N-dimensional vector are 1.

According to the CNN architecture, an additional nonlin
ear operation would be employed after the convolution oper
ation for each graph. 

x lþ 1ð Þ

f ¼ σ y lð Þ
f

� �

: (3) 

Afterwards, the protein structural features extracted by 
TAGCN are fed into the maximum pooling layer and the lin
ear layer containing 128 neurons. This process ensures a 
fixed number of outputs from the feature extraction module. 
Finally, for a pair of protein spatial maps Gi and Gj, we ex
tract its structural feature vectors as Fg1 2 R1×128 

and Fg2 2 R1×128, respectively.
The convolution process of TAGCN at K¼ 3 (Fig. 3) is il

lustrated below. The feature map of each vertex is assumed 
to contain one feature. Similarly, CNN, multiple channels are 
formed from the features extracted by multiple filters in each 
convolutional layer. Features extracted in filter ranging from 
1 to 3 are denoted as g lð Þ

c;f ;1A1xðlÞ, gðlÞc;f ;2A2xðlÞ and gðlÞc;f ;3A3xðlÞ. 
Features extracted by the three filters represent the relation
ship between the vertices and their neighbors in different spa
tial ranges. The new features of the green vertices in the 
graph are obtained by linearly combining them. New features 
of the vertex are denoted as yðlÞf ¼ gðlÞc;f ;1A1xðlÞ þgðlÞc;f ;2A2xðlÞ þ
gðlÞc;f ;3A3xðlÞ þbðlÞf 1Nl .

2.6 Prediction module
The local sequence features (Fs1 and Fs2) and structural fea
tures (Fg1 and Fg2) of the proteins obtained from the above 
steps are fused in the prediction module, based on 
the formulas: 

Fgc1 ¼ 1 � wð ÞFg1þwFs1: (4) 
Fgc2 ¼ 1 � wð ÞFg2þwFs2: (5) 

The fused features are connected and fed into the MLP 
layer, which is stacked of three linear layers (FC layer). The 
first two FC layers are followed by the BN function and 
ReLU activation function. Whereas the prediction results 

Figure 2. Protein amino acid embedding generation diagram. Protein sequences are first subjected to tokenization and positional encoding, followed by 
generating context-aware embeddings for each amino acid using the ProtT5-XL-half-UniRef50-enc model, resulting in vector representations of 
the proteins.
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generated by the last FC layer are nonlinearly transformed by 
the Sigmoid activation function, obtaining an output that lies 
between 0 and 1. A judgment of whether the input protein 
pair interacts or not is then obtained based on the set thresh
old. Here the threshold is set to 0.5. Namely, an output pre
diction scores greater than or equal to 0.5 indicates that the 
input protein pairs are interacting, and vice versa.

2.7 Evaluation metrics
Five-fold cross-validation is used to evaluate binary predic
tion from seven criteria, namely accuracy (ACC), precision 
(Prec), recall (Recall), specificity (Spec), F1-score (F1), Area 
Under Curve (AUC), and the area under PRC curve (The area 
under the precision-recall curve, AUPRC). 

ACC ¼
TPþTN

TPþFNþ FPþTN
; (6) 

Prec¼
TP

TPþ FP
; (7) 

Recall¼
TP

TPþFN
; (8) 

Spec ¼
TN

TNþFP
; (9) 

F1¼
2 � Prec � Recall

PrecþRecall
: (10) 

In the above formula: TP (True Positive) represents that 
the prediction is positive, and the prediction is correct; TN 
(True Negative) means that the prediction is negative, and 
the prediction is correct. FP (False Positive) means that the 
prediction is positive, but the prediction is incorrect; FN 
(False Negative) indicates that the prediction is negative, but 
the prediction is incorrect. 

FPR ¼
FP

FPþTN
; (11) 

TPR ¼
TP

TPþFN
: (12) 

AUC is the area enclosed by the ROC curve and the x-axis, 
the ROC curve x-axis is FPR (False Positive Rate), and the y 
axis is TPR (True Positive Rate).

AUPRC is the area enclosed by the PRC curve and the 
x-axis, the PRC curve x-axis is the recall (Recall), and the 
y-axis is the precision (Prec).

2.8 Interpretability analysis
The interpretable analysis of the significant global features of 
protein structure extracted by TAGCN involves the following 
process: First, we load the amino acid sequences of the pro
teins, along with their contact maps and encoded vector rep
resentations. Next, we generate an adjacency matrix based 
on the contact map and create a graph data structure, incor
porating the protein-encoded vectors as node features. These 
data are then input into the TAGCN model. The input graph 
data undergoes processing through the TAGConv layers, 
where graph convolution operations update the node fea
tures, followed by a forward propagation to obtain the out
put features processed by the TAGCN model. Finally, these 
output features are passed through an attention mechanism 
module to derive the corresponding attention scores, which 
are then combined to calculate the node importance scores.

To interpret analysis of the crucial local features of protein 
sequences extracted by TextCNN, we utilized visualizations 
of the activation maps of the convolutional kernels. These 
maps provide effective means to understand how TextCNN 
captures features from the input data. In the context of 
TextCNN, the activation maps illustrate the activation values 
generated as the convolutional kernels slide over the protein 
sequences. These activation values reflect the degree of 
matching between the kernels and the local features at differ
ent positions within the input sequence.

2.9 Model training
TPepPro takes the protein/peptide sequence features and pre
dicts contact maps as input. We used the dgl libraries of 
Python 3.7, PyTorch 1.5.1, and CUDA 10.1 to implement 
TAGCN (Du et al. 2018). At the same time, the experiment 
took advantage of the powerful computing of the GPU, 
namely NVIDIA Quadro RTX, 24GB memory. The TPepPro 
model was trained on 50 epochs on the protein-peptide com
plex dataset using Adam optimizer, with a learning rate and 
batch size of 0.001 and 32, respectively. To avoid overfitting, 
BN technology is used during training. Other parameters 
took the default values provided by PyTorch (Zhai 
et al. 2023).

3 Results
The TPepPro model is composed of an investigation into the 
effects of sequence encoding methods, graph CNN methods, 
and the architecture of the neural network. Comparative 
analyses are conducted between the TPepPro model and 

Figure 3. Topology-Adaptive Graph Convolutional Network (TAGCN) convolution process with K¼3.The central amino acid node aggregates features 
from neighboring nodes within three hop distances (K¼1,2,3), enabling the capture of both local and extended structural information.
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other state-of-the-art methods. The performance of the 
TPepPro model on different datasets is examined using ROC 
curves and PR curves. Finally, case studies of high-confidence 
results are provided with experimental evidence.

3.1 Dataset
The protein-peptide complex dataset is from Propedia data
base (http://bioinfo.dcc.ufmg.br/propedia2/index.php/down 
load). The latest version v2.3 contains 49 300 protein- 
peptide complexes. We treated protein-peptide complexes as 
positive protein-peptide samples, and negative interactions 
are constructed by randomly pairing protein-peptide pairs 
and not present in positive dataset. There may be inconsisten
cies between the number of amino acids in the contact dia
gram generated from their corresponding structure files and 
the number of amino acids in the embedding generated from 
their original amino acid sequences. This discrepancy arises 
from variations in the representation of the protein structure 
and the raw amino acid sequence, potentially impacting the 
analysis and interpretation of the data. At this time, the 
amino acid embedding of the protein cannot correspond to 
the amino acids in the contact map, and the amino acid verti
ces in the diagram generated by the contact diagram cannot 
obtain the corresponding amino acid expression, so that the 
subsequent extraction of protein structure features cannot be 
carried out. Therefore, we only selected proteins and peptides 
whose amino acid numbers in the contact chart matched their 
original amino acid numbers. As shown in Table 1, there 
were 9594 pairs of positive peptide-protein complex samples 
and 9593 pairs of negative samples, including 14 374 types 
of valid proteins and 9594 valid peptides.

3.2 Evaluation on sequence coding strategy
To verify the robustness of the sequence coding method used in 
this study, a set of comparative tests was designed. The com
parison of the ProtT5_XL_half_UniRef50-enc coding method 
with SeqVec (Heinzinger et al. 2019), ProtXLNet, and 
ProtBert-BFD (Elnaggar et al. 2022). To ensure the reliability 

of this experiment, the sequence coding strategy was controlled 
as the sole variable. The model architecture used in this experi
ment is TPepPro. Our data experiments compared the dataset 
consists of protein-peptide complex that sourced from Propedia 
v2.3. As shown in Fig. 4, model ProtT5_XL_half_UniRef50- 
enc we used here ranked the first in all evaluate parameter. The 
robustness of ProtT5_XL_half_UniRef50-enc coding method 
has been justified.

3.3 Evaluation on structural featuring strategy
To showcase the advantages of the graph CNN employed in 
this study for extracting protein structural features, we con
ducted a series of comparative experiments. The other graph 
CNNs used for this purpose include GAT (Veli�ckovi�c et al. 
2018), APPNP (Gasteiger et al. 2022), and GATV2 (Brody 
et al. 2022), alongside the TAGCN (Du et al. 2018) utilized 
in this research (where the graph CNN for protein structural 
feature extraction is a single layer).

Utilizing the same dataset (protein-peptide complex), we 
employed TPepPro for predictive modeling and facilitated di
rect comparative analysis. As shown in Fig. 5, the prediction 
accuracy achieved by GAT for extracting protein structural 
features is 0.841, while that of APPNP stands at 0.826, and 
for GATV2 it is 0.844. Our TPepPro method yields the high
est prediction accuracy of 0.855, highlighting its efficacy in 
extracting protein structural features.

3.4 Optimizing architecture of structural featuring 
neural network
In this study, the BN function and ReLU were used to reduce 
the overfitting of the model. Therefore, in this section, 
comparative experiments were conducted to compare with 
other functions: ReLU-Dropout, ReLU-BN, and BN_ReLU. 
The results, as depicted in Fig. 6, show that the BN-ReLU 
combination achieved the best performance.

Table 1. Dataset statistics.

Name Total number of samples Types of protein Types of peptide Positive samples Negative samples

Protein-peptide dataset 19 187 14 374 9594 9594 9593

Figure 4. Evaluation of different sequence coding methods. The horizontal axis represents statistical parameters of model accuracy. Colors represent 
different models. The vertical axis values represent scores obtained by different models for evaluation.
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3.5 Comparison with state-of-the-art methods
The baseline method was outperformed by the TPepPro 
model in binary interaction prediction. TPepPro focuses pri
marily on the binary classification of whether query peptide 
and the receptor protein interact with each other or not. In 
this study, the classification performance of TPepPro was 
compared with other state-of-the-art baseline methods, in
cluding the TAGPPI model based on deep learning using local 
sequence features and structural features of proteins for pre
dicting PPIs (Song et al. 2022) the PIPR model based on deep 
learning for PPI prediction, and a Siamese Convolutional 
Neural Network (SCNN) model that excludes GRUs from 
PIPR (Chen et al. 2019). All prediction methods were evalu
ated on a benchmark dataset, with the four models assessed 
on the protein-peptide complex dataset (Lei et al. 2021). As 
indicated in Table 2, the TPepPro model achieved higher ac
curacy and AUC values for predicting PepPIs compared to 
the TAGPPI model (Song et al. 2022).

3.6 ROC curve and PR curve of various datasets 
with different methods
We compared the performance of four models, PIPR, SCNN, 
TAGPPI, and TPepPro. In multiple datasets, encompassing 

protein-peptide complex, human, yeast, HIV-human protein, 
and SARS-CoV-2-human protein datasets. Five-fold cross- 
validation was executed on each dataset, and the predictions 
from the five test sets generated for each model were 
aggregated. Subsequently, ROC (Receiver Operating 
Characteristic) curves and P-R (Precision-Recall) curves were 
generated for each dataset. To better illustrate the improve
ment in the performance of TPepPro by comparing it with 
other methods, the five datasets were divided into two groups 
to represent two different situations (Fig. 7). The first situa
tion is exemplified by the yeast dataset, where existing mod
els already perform well, with a mean AUC of 0.990 among 
the three existing models. TPepPro still ranks highly with an 
AUC of 0.994. Similar results were observed in the human 
Protein dataset and the HIV-human dataset (Supplementary 
Fig. S1). The other situation involves datasets where existing 
models perform unsatisfactorily in predicting PepPIs yet 
show great improvement with TPepPro. These datasets in
clude the Propedia protein-peptide complex and the SARS- 
CoV-2-human protein datasets (Supplementary Fig. S2). 
From the ROC and PR curves, we found superior overall per
formance of TPepPro model exhibits in prediction across all 
five datasets as compared to the other three models.

Figure 5. Evaluation of different methods for extracting protein structural features. The figure legend is the same as Fig. 4.

Figure 6. The combination of the Dropout/BN function and the ReLU function is used to evaluate the model performance sequentially.

Table 2. Comparison of TPepPro model with three other models on protein-peptide complex datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC

PIPR 0.755 0.741 0.785 0.771 0.762 0.816 0.785
SCNN 0.729 0.722 0.745 0.737 0.734 0.790 0.753
TAGPPI 0.774 0.751 0.824 0.724 0.785 0.844 0.819
TPepPro (ours) 0.855 0.836 0.884 0.827 0.859 0.922 0.909

Note: Bold font indicates the best result in the column.
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3.7 Evaluation TPepPro performance on 
multiple datasets
To validate the applicability of TPepPro in other datasets, we 
conducted additional evaluations using human, yeast, and 
virus-human protein datasets. Such evaluations help us gain a 
more comprehensive understanding of TPepPro performance 
and its applicability cross different organisms. For evaluation 
of different models on these diverse datasets, we can more ac
curately evaluate their capabilities and accuracy, thereby fa
cilitating its better application in real-world scenarios.

Tables 3–6 correspond to the experimental testing of 
TPepPro and other methods using human proteins, yeast, 
HIV-human proteins, and SARS-CoV-2-human protein data
sets, respectively. From the experimental results, we conclude 
that TPepPro not only performs better on the protein-peptide 
complex dataset but also exhibits significantly better predic
tion performance compared to other models. This pattern is 
repeated on all five datasets. This indicates that TPepPro can 
achieve excellent prediction from multiple datasets, and fur
ther displays its reliability.

In addition, the AUCs obtained from the five datasets differ 
from those in the ROC curves. This is because the TAGPPI 
and TPepPro models calculate the AUCs separately for each 
fold using the predicted fold, and then sums these AUCs. 
Their average is treated as the final AUC value. However, the 
AUCs calculated for ROC curves are obtained by combining 
the predictions of the five testing sets before computation. In 
contrast, the AUCs in the tables from the PIPR and SCNN 
models are the same as those obtained in the ROC curves 

because their AUCs also use the same approaches, i.e. com
bined predictions of the five sets before evaluation.

Furthermore, four times of 5-fold cross-validations have 
been performed to increase the reliability of the tests. The 
results from each round of the validation are remarkably sim
ilar cross each fold. Moreover, the mean value of each evalu
ation parameter is very close to each other as well 
(Supplementary Table S5). This data indicates the stability 
and reliability of the TPepPro model.

3.8 Interpretability analysis
The protein structures extracted using TAGCN were ana
lyzed for interpretability of key global features. Taking pepti
des 3eyu_Q, 1a1m_C, and protein P62861 as an example. 
The node importance scores of each protein or peptide are 
shown in Fig. 8. The first amino acid E and the last amino 
acid A in 3eyu_Q, the first amino acid T in 1a1m_C and the 
seventh amino acid A in Protein P62861 show its importance 
in their respective sequences. This result represents a high po
tential for these amino acid sites that are likely to become 
peptide-protein binding sites.

The TextCNN module extracts protein local sequence fea
tures from high-dimensional protein global features that have 
been encoded by the attention based ProtTrans model. 
Therefore, TextCNN lacks a direct attention mechanism to 
retrieve specific positions of the input sequences for interpret
ability analysis of protein local sequence features extracted 
by TextCNN. Therefore, the importance scores correspond
ing to specific amino acids cannot be derived. Here, we visu
alize the input vectors after passing through the first 

Figure 7. ROC curves and P-R curves of datasets. Curves of yeast dataset represent datasets that already have good performance in other methods. 
Curves protein-peptide complex dataset represents the pattern of datasets that do not have satisfying performance in other methods, yet greatly 
improved by TPepPro.
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convolutional layer instead. This is because the data represen
tations in post-first convolution establish a more intuitive 
connection with the original input data. Using the P0DTC2 
and P62861 proteins as examples, the top 20 absolute values 
of activation values correspond to the activation maps shown 
in Fig. 9. The darker the color and the further left the position 
in the ranking, the higher the absolute value of the Activation 
Value. The red bars indicate positions with high Activation 
Values, suggesting a greater potential for these sites to serve 
as binding sites for PepPIs. Conversely, the more purple the 
color and the further left the ranking of the bars, the smaller 
the Activation Value, indicating that these positions are rela
tively conserved and less likely to become interaction bind
ing sites.

3.9 TPepPro can find valid new interactions
From the predictions, we found 1662 pairs of new PepPIs 
that are not present in the input dataset before 
(Supplementary Table S2). The output of the TPepPro model 
contains two confidence values, which respectively refer the 
extent to which the model supports the presence (positive 
confidence value) or absence (negative confidence value) of 
interactions between sample pairs. Sixty-nine of them were 
found to have a positive confidence value greater than or 
equal to 0.99999, and more than 43% belong to humans. 

Homo sapiens was chosen as the organism for case studies 
for both peptide and protein, as we aim to find biologically 
meaningful evidence. However, the pairs involving to differ
ent species, including interactions between humans and vari
ous viruses or bacteria, are also present in the predictions and 
are worthy of investigation.

To validate the efficacy of the model and assess the practi
cal biological relevance of the predicted outcomes, extensive 
research was conducted on the predicted results. Utilizing our 
custom-built package named TPepPro-filter for screening, 11 
pairs of newly discovered high-confidence PepPIs were 
extracted. Their original label in the database was 0 (no inter
action) and the predicted label was 1 (interaction exits). They 
all belong to H.sapiens with a confidence level greater than 
or equal to 0.99999 (Supplementary Table S3). Docking for 
each pair was carried out by ClusPro 2.0 to predict the inter
action structure (Kozakov et al. 2017). All those 11 pairs 
were predicted to exhibit interaction. Docking results can be 
found in Supplementary Material S4 and Supplementary 
Fig. S3.

The dataset used in this study is Propedia v2.3, which col
lected published PepPIs from the Protein Data Bank on 15 
November 2022. Therefore, the so-called new interactions 
here include those not recorded in Propedia, as well as truly 
novel interactions. Two cases of the former were found 

Table 3. Comparison of TPepPro with three other models on human datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC

PIPR 0.849 0.860 0.833 0.839 0.847 0.941 0.933
SCNN 0.937 0.927 0.948 0.947 0.937 0.983 0.981
TAGPPI 0.937 0.923 0.953 0.920 0.938 0.980 0.978
TPepPro (ours) 0.947 0.943 0.953 0.941 0.948 0.988 0.989

Note: Bold font indicates the best result in the column.

Table 4 Comparison of TPepPro with three other models on yeast datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC

PIPR 0.966 0.960 0.973 0.973 0.966 0.988 0.986
SCNN 0.958 0.963 0.952 0.952 0.957 0.988 0.986
TAGPPI 0.971 0.973 0.968 0.973 0.970 0.993 0.994
TPepPro (ours) 0.979 0.981 0.978 0.981 0.979 0.994 0.994

Note: Bold font indicates the best result in the column.

Table 5. Comparison of TPepPro with three other models on HIV-human protein datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC

PIPR 0.867 0.863 0.872 0.871 0.867 0.906 0.899
SCNN 0.875 0.886 0.861 0.865 0.873 0.933 0.935
TAGPPI 0.877 0.878 0.877 0.877 0.877 0.944 0.945
TPepPro (ours) 0.891 0.886 0.897 0.884 0.891 0.956 0.954

Note: Bold font indicates the best result in the column.

Table 6. Comparison of TPepPro with three other models on SARS-CoV-2-human protein datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC

PIPR 0.663 0.662 0.667 0.665 0.664 0.679 0.649
SCNN 0.671 0.666 0.683 0.675 0.674 0.717 0.685
TAGPPI 0.703 0.692 0.738 0.667 0.713 0.776 0.742
TPepPro (ours) 0.747 0.733 0.807 0.687 0.759 0.833 0.821

Note: Bold font indicates the best result in the column.
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through extensive database searching and literature research. 
The two pairs of interactions were validated with experimen
tal evidence (Table 7). At the same time, both pairs are 
ranked the highest positive confidence value among all hu
man samples.

The first pair of interaction 6v13_B (PDB ID of HLA- 
DRB1) and 4ov5_L (HLA-A) was proved by Affinity 
Capture-Mass Spectrometry experiment, which originated 
from a pre-published dataset from Steve Huttlin et al. at 
Harvard Medical School (Huttlin et al. 2015). The second 
pair of experimentally confirmed interactions was between 
3r85_B (BCL2L1) and 7m5c_B (BAK), which was more ex
tensively reported. According to the database BioGRID 4.4 
(Oughtred et al. 2021), there were 6 high-throughput and 10 
low-throughput experimental evidences of the interaction be
tween BCL2L1 and BAK (Griffiths et al. 1999, Degterev et al. 
2001, Zhang et al. 2002, Whitfield et al. 2003, Rual et al. 
2005, Willis et al. 2005, Venkatesan et al. 2009, Rudner 
et al. 2011, Trepte et al. 2015, Trepte et al. 2018, He et al. 
2020, Luck et al. 2020, Huttlin et al. 2021, Li et al. 2021). 

Detailed experiments include Affinity Capture-Luminescence, 
Affinity Capture-Mass Spectrometry, Affinity Capture 
Western Blotting, Fluorescence Resonance Energy Transfer, 
PepPIs, Reconstituted Complex Assay, and Two-Hybrid 
Assay. Moreover, evidence of BCL2L2-BAK interaction was 
found as well, including two high-throughput experimental 
test using Two-Hybrid Assay (Holmgreen et al. 1999, Kim 
et al. 2014) and two high-throughput experiment using 
Affinity Capture-Western (Rolland et al. 2014, Luck 
et al. 2020).

The two validated pairs provide evidence to support the ef
fectiveness of our predictive model. The remaining nine pairs 
have all passed the docking test, demonstrating a wide range/ 
scope of potential interactions that have yet to be experimen
tally detected. Interestingly, four pairs in the results showed 
no interaction in the initial dataset (original label was 0), yet 
TPepPro predicted their existence with 100% confidence 
(Supplementary Table S3 Sheet2). It is worth noting that the 
first pair involves human protein and peptide from 
Saccharomyces cerevisiae, and the fourth pair involves T4 

Figure 8. Heatmap of residue importance scores for global features of protein structures extracted by TAGCN.

Figure 9. Activation map of local features of protein sequences extracted by TextCNN of protein P0DTC2 and P62861.
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bacteriophage and human. Therefore, the two pairs of novel 
interactions predicted by TPepPro hold the potential for fur
ther biological validation.

4 Discussion and conclusion
A Transformer-based module was utilized in TPepPro for 
data preprocessing. Convolutional structures were employed 
to simultaneously extract features from amino acid sequences 
and contact maps describing the spatial structure of proteins. 
Additionally, an overfitting prevention method, Batch 
Normalization, was applied in the prediction part of the 
model for PepPIs prediction. It was proved that the perfor
mance could be improved by replacing the Dropout function 
with BN. The model architecture in TPepPro improves the ac
curacy by 8.1% in predicting PepPIs, as compared with the 
second-best model TAGPPI.

It is noticed that although machine learning techniques 
possess powerful computational capabilities, the authenticity 
of in silico prediction has been under considerable debate. 
Identification of potential PepPIs is inherently complex and 
challenging. In our study, TPepPro model displays its effec
tiveness in discovery of novel PepPIs that have been experi
mentally validated. A total of 17 experimental evidence were 
reported to support the accuracy of TPepPro system. 
Therefore, TPepPro not only outperforms previously pub
lished models in terms of accuracy, AUC, and other statistical 
metrices, but it also demonstrates experimental feasibility.

The interpretability analysis of the key global features 
extracted by TAGCN reveals amino acids with strong feature 
importance, such as first amino acid E in 3eyu_Q. This find
ing is significant for predicting peptide-protein binding sites. 
Similar feature importance is also observed in the local se
quence features of TextCNN. Unfortunately, the dimension
ality reduction performed by the convolutional layers 
hampers the mapping back to the original amino acid sequen
ces. However, mapping the activation values back to the orig
inal amino acids would provide substantial biological 
insights. Ultimately, the models we explore will relate back to 
biological questions regarding active and contact sites be
tween peptides and proteins. Identifying amino acids with the 
highest potential to become binding sites, along with rela
tively conserved amino acid positions, will be meaningful for 
studying protein-protein, protein-peptide, and peptide- 
peptide interactions. Therefore, in the future, we will develop 
methods for extracting local sequence features of proteins 
that can be traced back to amino acids. We aim to conduct a 
detailed interpretability analysis of both local features of pro
tein sequences and global features of protein structures.

Furthermore, the PepPI model can be applied in drug re
search. Researchers have implemented the pre-trained 
TPepPro model on drug-target datasets. The resulting drug- 
target interaction prediction model will possess the capability 
to uncover novel interactions, to predict binding affinities, 
and to identify potential drug candidates with high specific
ity. By leveraging these capabilities, we can enhance the 

efficiency of drug discovery processes and pave the way for 
targeted therapies.
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