Supporting Information for

Neuropeptide Y neurons mediate opioid-induced itch by disinhibiting GRP-GRPR microcircuits in the spinal cord

Qian Zeng, Yitong Li, Yifei Wu, Jiawei Wu, Kangtai Xu, Yiming Chen, Yunfei Rao, Nan Li, Yuhui Luo, Changyu Jiang, Chaoran Wu, and Zilong Wang

Corresponding authors: Zilong Wang, Chaoran Wu, Changyu Jiang.

Email: wangzl6@sustech.edu.cn, wu.chaoran@szhospital.com, changyujiang@email.szu.edu.cn.

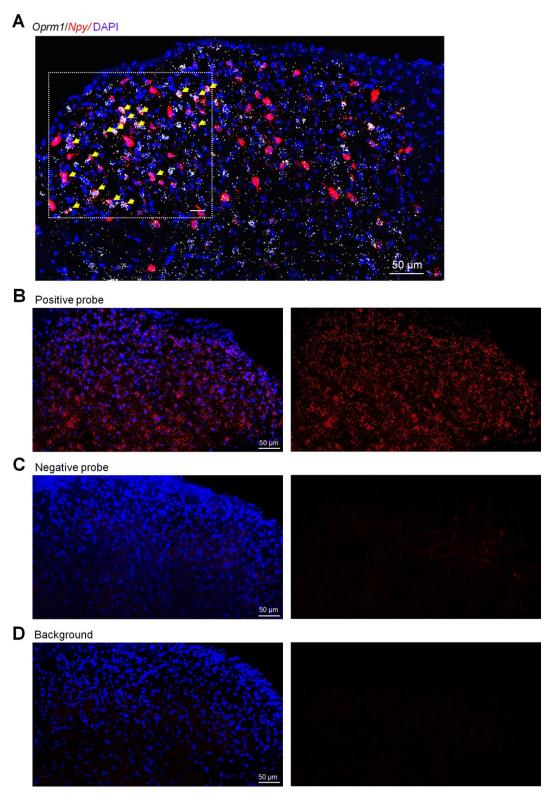
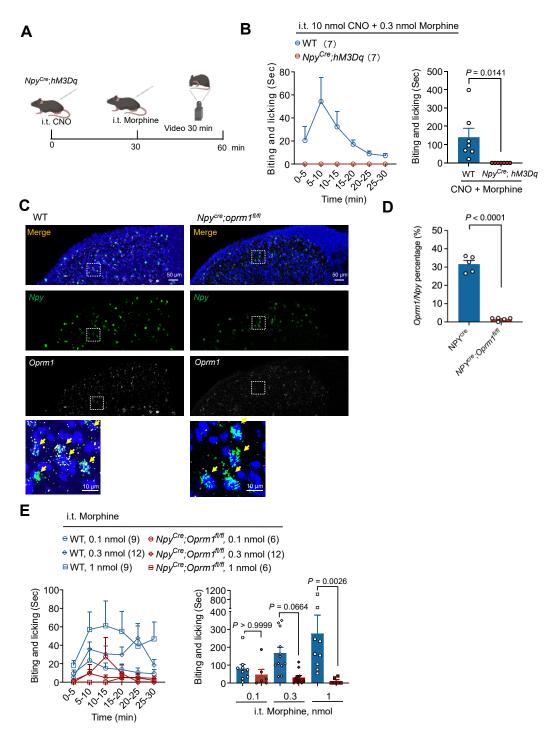
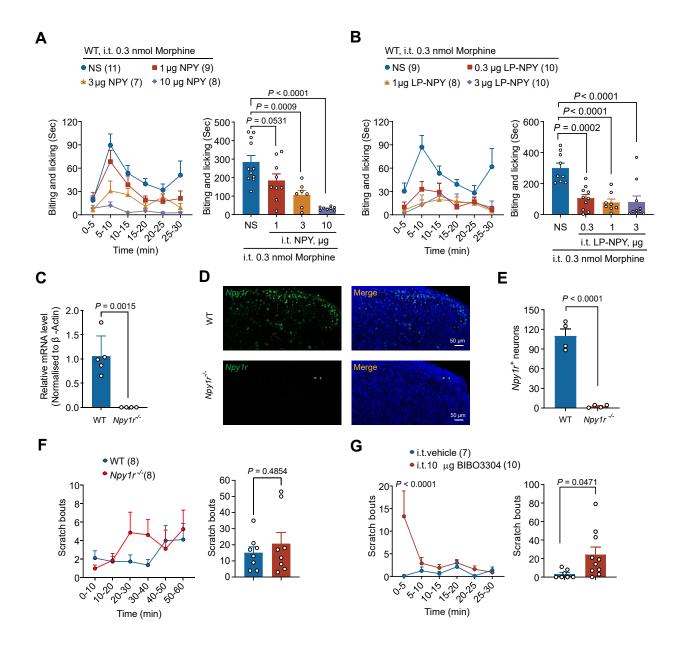
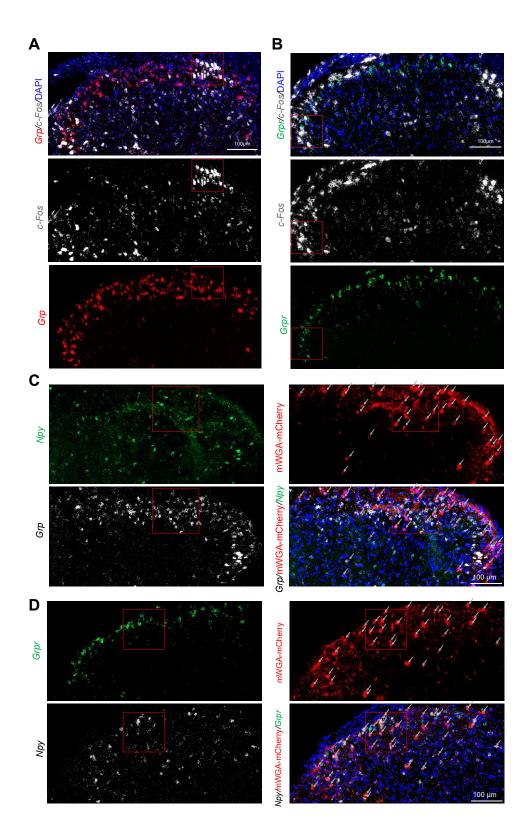


Figure S1. The whole SDH images for Figure 1A and control probes. (A) The whole SDH for Figure 1A. Scale bar = 50 μm. In situ hybridization RNAscope images of MOR mRNA (Oprm1, white) and NPY mRNA (Npy, red) in mouse spinal dorsal horn (SDH). Yellow arrows indicate Oprm1 double-labeled with Npy. 12 spinal cord sections from 6 mice were analyzed. (B) RNAscope images of positive probe (red) and DAPI (blue) in WT mice. 15 spinal cord sections from 3 mice were analyzed. Scale bar = 50 μm. (C) RNAscope images of negative probe (red) and DAPI (blue) in WT mice. 15 spinal cord sections from 3 mice were analyzed. Scale bar = 50 μm. (D) RNAscope background images of DAPI (blue) in WT mice. 15 spinal cord sections from 3 mice were analyzed. Scale bar = 50 μm.

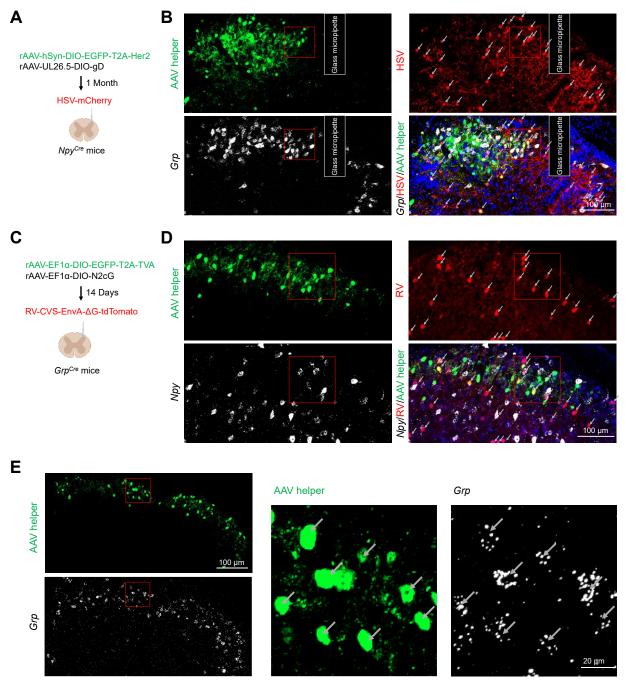

Figure S2. Intrathecal injection of morphine-induced biting and licking were blocked in *Npy*^{Cre};*hM3Dq* and *Npy*^{Cre};*Oprm1*^{fl/fl} mice. (A) Timeline for intrathecal injection of Clozapine N-oxide (CNO) (10 nmol) in *Npy*^{Cre};*hM3Dq* or WT mice. (B) Intrathecal injection of CNO (10 nmol) and morphine (0.3 nmol)-induced biting and licking were significantly inhibited in *Npy*^{Cre};*hM3Dq* mice. Student's unpaired two-tailed *t*-test. (C-D) RNAscope showed *Oprm1* (white) conditional knockout in *Npy*⁺ (green) interneurons of *Npy*^{Cre};*Oprm1*^{fl/fl} mice, 15 spinal cord sections from 5 mice were analyzed, respectively. Student's unpaired two-tailed *t*-test. (E) Intrathecal injection of morphine (0.1, 0.3, 1 nmol)-induced biting and licking were blocked in *Npy*^{Cre};*Oprm1*^{fl/fl} mice, Two-way ANOVA, Bonferroni's multiple comparisons. Data are shown as means ± SEM. *P* values are indicated in the figures. Sample sizes are presented in parentheses. Source data are provided as a Source Data file. Created in BioRender. Wang, Z. (2025) https://BioRender.com/v1vbo0a

Figure S3. NPY-NPY1R modulates morphine-induced itch. (A) Intrathecal morphine-induced biking and licking were dose-dependently inhibited by NPY (1, 3, 10 μg). One-way ANOVA, Dunnett's multiple comparisons. **(B)** Intrathecal morphine-induced biking and licking were significantly blocked with the LP-NPY (0.3, 1, 3 μg). One-way ANOVA, Dunnett's multiple comparisons. **(C)** qPCR quantification of *Npy1r* expression in the spinal cord of WT and *Npy1r*^{-/-} mice, n = 5 and 4 mice, respectively. Student's unpaired two-tailed *t*-test. **(D-E)** RNAscope showed *Npy1r* expression in the spinal cord of WT and *Npy1r*^{-/-} mice, 10 spinal cord sections from 4 mice and 8 spinal cord sections from 4 mice were analyzed, respectively. Student's unpaired two-tailed *t*-test. **(F)** Spontaneous itch in WT and *Npy1r*^{-/-} mice. Student's unpaired two-tailed *t*-test. **(G)** Spontaneous itch after intrathecal BIBO3304 (10 μg) in WT mice. Student's unpaired two-tailed *t*-test. Data are shown as means \pm SEM. *P* values are indicated in the figures. Sample sizes are presented in parentheses. Source data are provided as a Source Data file.

Figure S4. The whole SDH images for *c-Fos* and WGA in Figure 4. (A) The whole SDH for Figure 4A. Co-expression of Grp (red) and c-Fos (white) mRNA in the SDH after intrathecal injection of morphine. Scale bar = 100 μm. (B) The whole SDH for Figure 4D. Co-expression of Grp (red) and c-Fos (white) mRNA in the SDH after intrathecal injection of morphine. Scale bar = 100 μm. (C) The whole SDH for Figure 4H. mWGA-mCherry signals were detected in both Npy^+ (Green) and Grp^+ (White) interneurons. Gray arrows indicate mWGA-mCherry-labeled cells. Scale bar = 100 μm. (D) The whole SDH for Figure 4I. mWGA-mCherry signals were detected in Npy^+ (White), but only a few in $Grpr^+$ (Green) interneurons. Gray arrows indicate mWGA-mCherry-labeled cells. Scale bar = 100 μm.

Figure S5. Supplementary figures for HSV and RV tracing in Figure 4. (A) Spinal dorsal horn injection (T_{13} - L_1 levels) of rAAV-hSyn-EGFP-T2A-Her2 and rAAV-UL26.5-DIO-gD helper virus 1 month ago, followed by HSV-mCherry virus in Npy^{Cre} mice, the spinal cords were dissected 6 days later for RNAscope. (B) The whole SDH for Figure 4L. HSV-mCherry signals were detected in Grp^+ (White) interneurons. Gray arrows indicate HSV-labeled cells. Scale bar = 100 μm. (C) Spinal dorsal horn injection (T_{13} - L_1 levels) of rAAV-EF1α-DIO-EGFP-T2A-TVA and rAAV-EF1α-DIO-N2cG helper virus 14 days ago, followed by RV-CVS-EnvA- Δ G-tdTomato virus in Grp^{Cre} mice, the spinal cords were dissected 6 days later for RNAscope. (D) The whole SDH for Figure 4N. RV-CVS-EnvA- Δ G-tdTomato signals were detected in Npy^+ (White) interneurons. Gray arrows indicate RV-labeled cells. Scale bar = 100 μm. (E) The AAV helper virus specifically infected Grp^+ neurons, gray arrows indicate AAV helper double-labeled with Grp. 15 spinal cord sections from 5 mice were analyzed. Scale bar: 100 μm (left), 20 μm (right). Created in BioRender. Wang, Z. (2025) https://BioRender.com/mxv2gwk

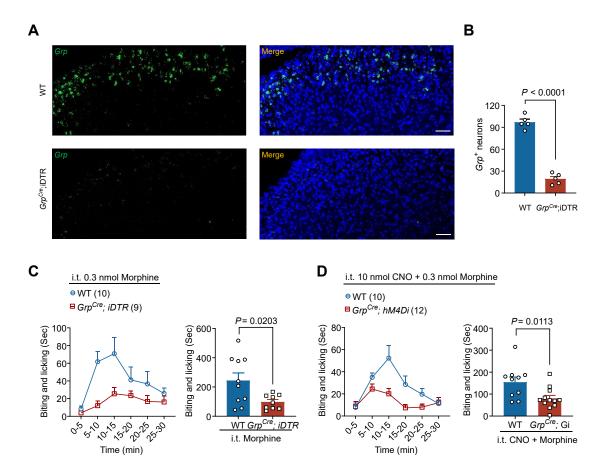


Figure S6. Intrathecal injection of morphine-induced biting and licking were attenuated in Grp^{Cre} ; iDTR and Grp^{Cre} ; hM4Di mice. (A-B) RNAscope data showed the ablation of Grp^+ (green) neurons in the SDH in Grp^{Cre} ; iDTR mice, scale bar = 50 µm, 13 spinal cord sections from 5 mice. cells containing \geq 5 RNAscope puncta were considered positive expression. Student's unpaired two-tailed t-test. (C) Intrathecal morphine (0.3 nmol)-induced biting and licking were significantly inhibited in Grp^{Cre} ; iDTR mice, student's unpaired two-tailed t-test. (D) Intrathecal injection of CNO (10 nmol) significantly inhibited morphine (0.3 nmol)-induced biting and licking in Grp^{Cre} ; hM4Di mice, student's unpaired two-tailed t-test. Data are shown as means \pm SEM. P values are indicated in the figures. Sample sizes are presented in parentheses. Source data are provided as a Source Data file.

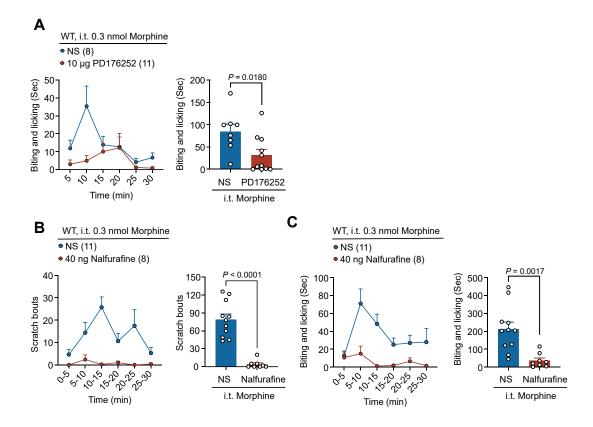


Figure S7. Intrathecal morphine-induced itch was inhibited by GRPR antagonist and KOR agonist. (A) Intrathecal morphine (0.3 nmol)-induced biting and licking were significantly reduced by intrathecal injected PD176252 (10 μ g), student's unpaired two-tailed *t*-test. (B-C) Intrathecal morphine-induced scratch or biting and licking were significantly reduced by intrathecal injected nalfurafine (40 ng). Student's unpaired two-tailed *t*-test. Data are shown as means \pm SEM. *P* values are indicated in the figures. Sample sizes are presented in parentheses. Source data are provided as a Source Data file.

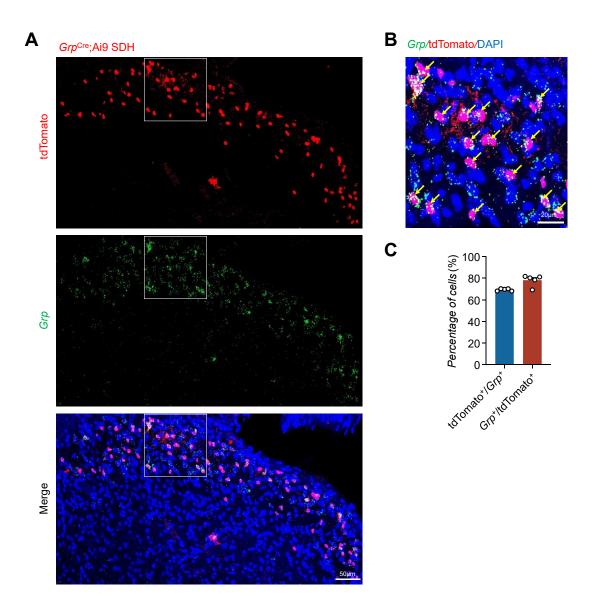
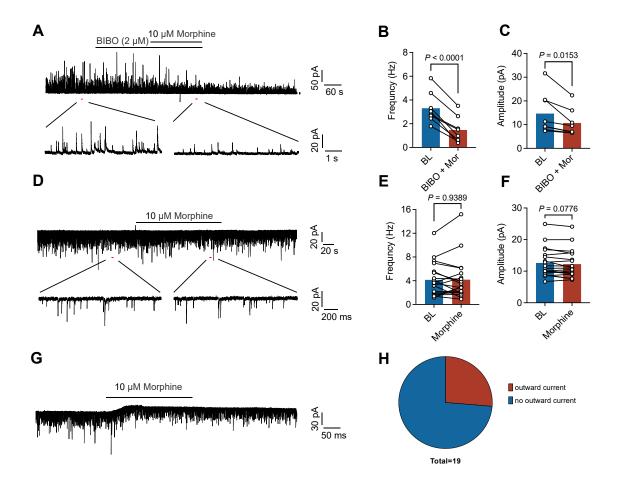



Figure S8. Grp^+ neurons labeling in Grp^{Cre} ;Ai9 mice. (A-B) RNAscope images of Grp mRNA (green) and tdTomato (red) in SDH of Grp^{Cre} ;Ai9 mice. Yellow arrows indicate Grp double-labeled with tdTomato reported. scale bar = 50 μ m (left) and 20 μ m (right). 10 spinal cord sections from 5 mice. (C) Double labeling of Grp RNAscope signals and tdTomato, Data are shown as means \pm SEM. Source data are provided as a Source Data file.

Figure S9. Morphine inhibits sIPSCs in GRP⁺ **interneurons with BIBO3304 pretreatment, but not sEPSCs in the SDH. (A)** Recording traces of spontaneous inhibitory postsynaptic currents (sIPSCs) of BIBO3304 (2 μM) pretreatment 3 min before morphine (10 μM) treatment in GRP⁺ interneurons of the spinal slices from *Grp*^{Cre};*Ai9* mice. **(B)** The sIPSC frequency before and after morphine treatment, 8 neurons from 3 mice were analyzed, paired two-tailed *t*-test. **(C)** The sIPSC amplitude before and after morphine treatment, 8 neurons from 3 mice were analyzed, paired two-tailed *t*-test. **(D)** Recording traces of spontaneous excitatory postsynaptic currents (sEPSCs) after morphine (10 μM) treatment in GRP⁺ interneurons of the spinal slices from *Grp*^{Cre};*Ai9* mice. **(E)** The sEPSC frequency before and after morphine treatment, 19 neurons from 6 mice were analyzed, paired two-tailed *t*-test. **(F)** The sEPSC amplitude before and after morphine treatment, 19 neurons from 6 mice were analyzed, paired two-tailed *t*-test. **(G)** Recording traces of morphine (10 μM) induced outward currents were recorded GRP⁺ interneurons in the SDH from *Grp*^{Cre};*Ai9* mice. **(H)** 5/19 of recorded neurons showed outward currents. *P* values are indicated in the figures. Data are shown as means with dots. Source data are provided as a Source Data file.

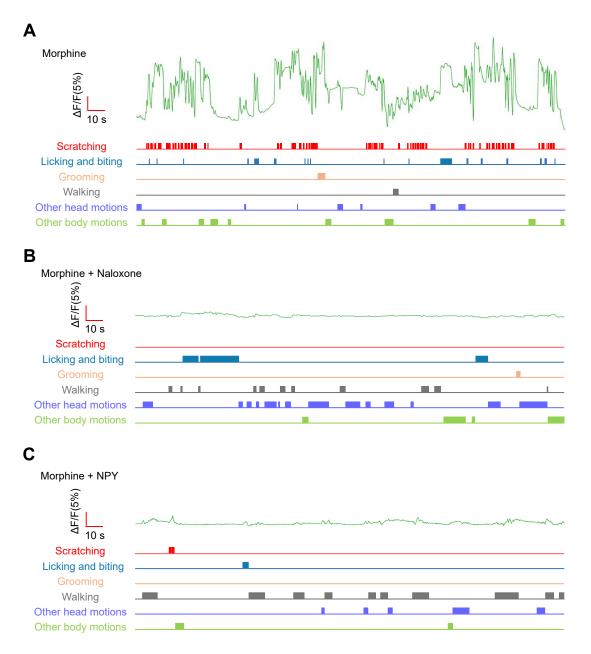


Figure S10. Example Δ F/F time series traces which correlated to the scratching behavior. (A) Example Δ F/F time series traces which correlated to the scratching behavior after intrathecal injected morphine (0.3 nmol). (B) Example Δ F/F time series traces after intrathecal co-injected morphine (0.3 nmol) and naloxone (10 nmol). (C) Example Δ F/F time series traces after intrathecal co-injected morphine (0.3 nmol) and NPY (10 μ g). n = 5 mice per group.

Tables S1. List of probes and viruses

RNA Probes		
Mm-Oprm1	Advanced Cell Diagnostic	315841- C3
Mm-Npy	Advanced Cell Diagnostic	313321-C2
Mm-Npy1r	Advanced Cell Diagnostic	427021
Mm-Grp	Advanced Cell Diagnostic	317861-C2
Mm-Grp	Advanced Cell Diagnostic	317861-C3
Mm-Grpr	Advanced Cell Diagnostic	317871
Mm-Fos	Advanced Cell Diagnostic	316921-C3
Virus		
rAAV-GAG-DIO-mCherry	Brain Case	BC-1227
RV-CVS-EnvA-ΔG-tdTomato	Brain Case	BC-RV-CVS
rAAV-EF1α-DIO-EGFP-T2A-TVA	Brain Case	BC-0041
rAAV-EF1α-DIO-N2cG	Brain Case	BC-0442
H129-dgD-hUbC-mCherry-P2A-scHer	Brain Case	BC-HSV-Hs06
rAAV-hSyn-DIO-EGFP-T2A-Her2	Brain Case	BC-1663
rAAV-UL26.5-DIO-gD	Brain Case	BC-1356

Table S2. List of primers

Genes	Primer sequence (5'-3')	
β-actin	FP:GGCTGTATTCCCCTCCATCG	RP:CCAGTTGGTAACAATGCCATGT
Npy1r	FP:ACAGGCTGTCTTACACGACTCTCC	RP:CATGATGTTGATTCGCTTGGTCTC

Note: FP: forward primer; RP: reverse primer.