Novel pro-resolving lipid mediator mimetic 3-oxa-PD1n-3 DPA reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice

Furutani, Kenta; Chen, Ouyang; McGinnis, Aidan; Wang, Yuqing; Serhan, Charles N; Hansen, Trond Vidar; Ji, Ru-Rong Ji


Specialized pro-resolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs; 3-oxa-PD1n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). Herein, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by either histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, this anti-pruritic effect lasted for several weeks after 1-week of intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. CTCL increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch via regulation of excitatory/inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.

Journal Club – 2022.11.25

Transient stimulation of TRPV4-expressing keratinocytes promotes hair follicle regeneration in mice

Pu Yang 1Ping Lu 1 2Jialie Luo 1Lixia Du 1Jing Feng 1Tao Cai 1 3Yi Yuan 1Hunter Cheng 1Hongzhen Hu 1

1Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA

2Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China

3Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Background and Purpose: Hair follicle telogen to anagen transition results in a break in cellular quiescence of the hair follicle stem cells, which subsequently promotes hair follicle regeneration. Many critical molecules and signalling pathways are involved in hair follicle cycle progression. Transient receptor potential vanilloid 4 (TRPV4) is a polymodal sensory transducer that regulates various cutaneous functions under both normal and disease conditions. However, the role of TRPV4 in hair follicle regenera- tion in vivo remains incompletely understood.

Experimental Approach: Using adult C57BL/6J mice, keratinocyte (K14Cre; Trpv4f/f) and macrophage (Cx3cr1Cre; Trpv4f/f) Trpv4 conditional knockout (cKO) mice, Trpv4−/− mice, we investigated the effect of a single intradermal injection of GSK1016790A, a potent and selective small molecule TRPV4 activator, on hair follicle regenera- tion. Chemical cues and signal molecules involved in hair follicle cycle progression were measured by immunofluorescence staining, quantitative RT-PCR and western blotting.

Key Results: Here, we show that a single intradermal injection of GSK1016790A is sufficient to induce telogen to anagen transition and hair follicle regeneration in mice by increasing the expression of the anagen-promoting growth factors and down- regulating the expression of growth factors that inhibit anagen. The action of GSK1016790A relies largely on the function of TRPV4 in skin and involves activation of downstream ERK signalling.

Conclusion and Implications: Our results suggest that transient chemical activation of TRPV4 in the skin induces hair follicle regeneration in mice, which might provide an effective therapeutic strategy for the treatment of hair loss and alopecia.

Journal Club – 2022.11.18

Structural basis of TRPV3 inhibition by an antagonist


The TRPV3 channel plays vital roles in skin physiology. Dysfunction of TRPV3 causes skin diseases, including Olmsted syndrome. However, the lack of potent and selective inhibitors impedes the validation of TRPV3 as a therapeutic target. In this study, we identifed Trpvicin as a potent and subtype-selective inhibitor of TRPV3. Trpvicin exhibits pharmacological potential in the inhibition of itch and hair loss in mouse models. Cryogenic electron microscopy structures of TRPV3 and the pathogenic G573S mutant complexed with Trpvicin reveal detailed ligand-binding sites, suggesting that Trpvicin inhibits the TRPV3 channel by stabilizing it in a closed state. Our G573S mutant structures demonstrate that the mutation causes a dilated pore, generating constitutive opening activity. Trpvicin accesses additional binding sites inside the central cavity of the G573S mutant to remodel the channel symmetry and block the channel. Together, our results provide mechanistic insights into the inhibition of TRPV3 by Trpvicin and support TRPV3-related drug development.

Presenter: Gi Baek Lee

Journal Club – 2022.11.11

Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound


Canonical transient receptor potential (TRPC) channels control influxes of Ca2 and other cations that induce diverse cellular processes upon stimulation of plasma membrane receptors coupled to phospholipase C (PLC). Invention of subtype-specific inhibitors for TRPCs is crucial for distinction of respective TRPC channels that play particular physiological roles in native systems. Here, we identify a pyrazole compound (Pyr3), which selectively inhibits TRPC3 channels. Structure-function relationship studies of pyrazole compounds showed that the trichloroacrylic amide group is important for the TRPC3 selectivity of Pyr3. Electrophysiological and photoaffinity labeling experiments reveal a direct action of Pyr3 on the TRPC3 protein. In DT40 B lymphocytes, Pyr3 potently eliminated the Ca2 influx-dependent PLC translocation to the plasma membrane and late oscillatory phase of B cell receptorinduced Ca2 response. Moreover, Pyr3 attenuated activation of nuclear factor of activated T cells, a Ca2-dependent transcription factor, and hypertrophic growth in rat neonatal cardiomyocytes, and in vivo pressure overload-induced cardiac hypertrophy in mice. These findings on important roles of native TRPC3 channels are strikingly consistent with previous genetic studies. Thus, the TRPC3- selective inhibitor Pyr3 is a powerful tool to study in vivo function of TRPC3, suggesting a pharmaceutical potential of Pyr3 in treatments of TRPC3-related diseases such as cardiac hypertrophy.

Keywords: Ca2+ signaling, pyrazole compounds, TRPC channels, TRPC3


μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia

Jie Sun Shao-Rui Chen Hong Chen Hui-Lin Pan 


Key points: μ-Opioid receptors (MORs) are expressed peripherally and centrally, but the loci of MORs responsible for clinically relevant opioid analgesia are uncertain. Crossing Oprm1flox/floxand AdvillinCre/+ mice completely ablates MORs in dorsal root ganglion neurons and reduces the MOR expression level in the spinal cord. Presynaptic MORs expressed at primary afferent central terminals are essential for synaptic inhibition and potentiation of sensory input by opioids. MOR ablation in primary sensory neurons diminishes analgesic effects produced by systemic and intrathecal opioid agonists and abolishes chronic opioid treatment-induced hyperalgesia. These findings demonstrate a critical role of MORs expressed in primary sensory neurons in opioid analgesia and suggest new strategies to increase the efficacy and reduce adverse effects of opioids.

Abstract: The pain and analgesic systems are complex, and the actions of systemically administered opioids may be mediated by simultaneous activation of μ-opioid receptors (MORs, encoded by the Oprm1 gene) at multiple, interacting sites. The loci of MORs and circuits responsible for systemic opioid-induced analgesia and hyperalgesia remain unclear. Previous studies using mice in which MORs are removed from Nav1.8- or TRPV1-expressing neurons provided only an incomplete and erroneous view about the role of peripheral MORs in opioid actions in vivo. In the present study, we determined the specific role of MORs expressed in primary sensory neurons in the analgesic and hyperalgesic effects produced by systemic opioid administration. We generated Oprm1 conditional knockout (Oprm1-cKO) mice in which MOR expression is completely deleted from dorsal root ganglion neurons and substantially reduced in the spinal cord, which was confirmed by immunoblotting and immunocytochemical labelling. Both opioid-induced inhibition and potentiation of primary sensory input were abrogated in Oprm1-cKO mice. Remarkably, systemically administered morphine potently inhibited acute thermal and mechanical nociception and persistent inflammatory pain in control mice but had little effect in Oprm1-cKO mice. The analgesic effect of intrathecally administered morphine was also profoundly reduced in Oprm1-cKO mice. Additionally, chronic morphine treatment-induced hyperalgesia was absent in Oprm1-cKO mice. Our findings directly challenge the notion that clinically relevant opioid analgesia is mediated mostly by centrally expressed MORs. MORs in primary sensory neurons, particularly those expressed presynaptically at the first sensory synapse in the spinal cord, are crucial for both opioid analgesia and opioid-induced hyperalgesia.

Keywords: TRPV1; fentanyl; opiate; opioid analgesic tolerance; presynaptic inhibition; synaptic transmission.

Journal Club – 2022.10.28

Endogenous Mas-related G-protein-coupled receptor X1 activates and sensitizes TRPA1 in a human model of peripheral nerves


Mas-related G-protein-coupled receptor X1 (MrgprX1) is a human-specific Mrgpr and its expression is restricted to primary sensory neurons. However, its role in nociception and pain signaling pathways is largely unknown. This study aims to investigate a role for MrgprX1 in nociception via interaction with the pain receptor, Transient Receptor Potential Ankyrin 1 (TRPA1), using in-vitro and in-vivo human neuronal models. MrgprX1 protein expression in human trigeminal nociceptors was investigated by the immunolabeling of the dental pulp and cultured peripheral neuronal equivalent (PNE) cells. MrgprX1 receptor signaling was monitored by Fura-2-based Ca2+ imaging using PNEs and membrane potential responses were measured using FluoVoltTM. Immunofluorescent staining revealed MrgprX1 expression in-vivo in dental afferents, which was more intense in inflamed compared to healthy dental pulps. Endogenous MrgprX1 protein expression was confirmed in the in-vitro human PNE model. MrgprX1 receptor signaling and the mechanisms through which it couples to TRPA1 were studied by Ca2+ imaging. Results showed that MrgprX1 activates TRPA1 and induces membrane depolarization in a TRPA1 dependent manner. In addition, MrgprX1 sensitizes TRPA1 to agonist stimulation via Protein Kinase C (PKC). The activation and sensitization of TRPA1 by MrgprX1 in a model of human nerves suggests an important role for this receptor in the modulation of nociception.

dental pulp, human, MrgprX1, nociception, peripheral neurons

Presenter: Hye In Kim

Journal Club – 2022.10.21

TMEM120A/TACAN inhibits mechanically activated Piezo2 channels

John Smith Del Rosario*, Matthew Gabrielle*, Yevgen Yudin and Tibor Rohacs# 

Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ 08540 


Mechanically activated Piezo2 channels are key mediators of light touch and proprioception in mice and humans. Relatively little is known about what other proteins regulate Piezo2 activity in a cellular context. TACAN (TMEM120A) was proposed to act as a high threshold mechanically activated ion channel in nociceptive dorsal root ganglion (DRG) neurons. Here we find that TACAN co-expression robustly reduced mechanically activated Piezo2 currents, but did not inhibit mechanically activated Piezo1 and TREK1 currents. TACAN co-expression did not affect cell surface expression of either Piezo1 or Piezo2 and did not have major effects on the cortical actin or tubulin cytoskeleton. TACAN expression alone did not result in the appearance of mechanically activated currents above background. In addition, TACAN and Piezo2 expression in DRG neurons overlapped, and siRNA mediated knockdown of TACAN did not decrease the proportion of slowly adapting mechanically activated currents, but resulted in an increased proportion of rapidly adapting currents. Our data do not support TACAN being a mechanically activated ion channel, and identify it as a negative modulator of Piezo2 channel activity.

Journal Club – 2022.10.14

Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury

Chase M. Carver, Haley R. DeWitt, Aiola P. Stoja and Mark S. Shapiro


We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholineinduced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazolinduced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.

Keywords: ion channels, TRPC channels, hippocampus, epilepsy, seizure, traumatic brain injury, epileptogenesis,

Journal Club – 2022.10.07

Inhibition of itch by neurokinin 1 receptor (Tacr1) -expressing ON cells in the rostral ventromedial medulla in mice

Taylor Follansbee1,2*, Dan Domocos3, Eileen Nguyen4, Amanda Nguyen1, Aristea Bountouvas1, Lauren Velasquez1, Mirela Iodi Carstens1, Keiko Takanami5, Sarah E Ross4, Earl Carstens1


The rostral ventromedial medulla (RVM) is important in descending modulation of spinal nociceptive transmission, but it is unclear if the RVM also modulates spinal pruriceptive transmission. RVM ON cells are activated by noxious algesic and pruritic stimuli and are pronociceptive. Many RVM-spinal projection neurons express the neurokinin-1 receptor (Tacr1), and ON-cells are excited by local administration of substance P (SP). We hypothesized that Tacr1-expressing RVM ON cells exert an inhibitory effect on itch opposite to their pronociceptive action. Intramedullary microinjection of SP significantly potentiated RVM ON cells and reduced pruritogen-evoked scratching while producing mild mechanical sensitization. Chemogenetic activation of RVM Tacr1-expressing RVM neurons also reduced acute pruritogen-evoked scratching. Optotagging experiments confirmed RVM Tacr1-expressing neurons to be ON cells. We conclude that Tacr1-expressing ON cells in RVM play a significant role in the modulation of pruriceptive transmission.

Presenter: Gi Baek Lee

Journal Club – 2022.09.29

Patch-seq of mouse DRG neurons reveals candidate genes for specific mechanosensory functions

Thibaud Parpaite, Lucie Brosse, Nina Se´ journe´ , Amandine Laur, Yasmine Mechioukhi, Patrick Delmas, Bertrand Coste


A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing. Transcriptional profiles are mapped onto previously identified sensory neuron types to identify cell-type correlates between datasets. Correlation of current signatures with single-cell transcriptomes provides a one-to-one correspondence between mechanoelectric properties and transcriptomically defined neuronal populations. Moreover, a gene-expression differential comparison provides a set of candidate genes for mechanotransduction complexes. Piezo2 is expectedly found to be enriched in rapidly adapting MS current-expressing neurons, whereas Tmem120a and Tmem150c, thought to mediate slowtype MS currents, are uniformly expressed in all mechanosensory neuron subtypes. Further knockdown experiments disqualify them as mediating MS currents in sensory neurons. This dataset constitutes an open resource to explore further the cell-type-specific determinants of mechanosensory properties.

Presenter: Hye In Kim