2024-07-26 Journal Club

LPS exacerbates TRPV4-mediated itch through the intracellular TLR4-PI3K signalling

Yanping Hao1,2,3 Liyan Wu1,2 Yuhui Wang4 Dongmei Shan1,2 Yifei Liu1 Jing Feng1,2 Yi Chang3 Ting Wang1,2,5,6

J Cell Mol Med  2024 Jul;28(13):e18509. doi: 10.1111/jcmm.18509.

  • 1Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
  • 2University of Chinese Academy of Sciences, Beijing, China.
  • 3Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
  • 4Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • 5Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China.
  • 6Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia, Zhaotong University, Zhaotong, Yunnan, China.

PMID: 38957035 PMCID: PMC11220342 DOI: 10.1111/jcmm.18509

Abstract

Pruritus is often accompanied with bacterial infections, but the underlying mechanism is not fully understood. Although previous studies revealed that lipopolysaccharides (LPS) could directly activate TRPV4 channel and TRPV4 is involved in the generation of both acute itch and chronic itch, whether and how LPS affects TRPV4-mediated itch sensation remains unclear. Here, we showed that LPS-mediated TRPV4 sensitization exacerbated GSK101-induced scratching behaviour in mice. Moreover, this effect was compromised in TLR4-knockout mice, suggesting LPS acted through a TLR4-dependent mechanism. Mechanistically, LPS enhanced GSK101-evoked calcium influx in mouse ear skin cells and HEK293T cells transfected with TRPV4. Further, LPS sensitized TRPV4 channel through the intracellular TLR4-PI3K-AKT signalling. In summary, our study found a modulatory role of LPS in TRPV4 function and highlighted the TLR4-TRPV4 interaction in itch signal amplification.

Keywords: LPS; PI3K; TLR4; TRPV4; itch sensitization.

2024-07-13 Journal Club

The fungal secretory peptide micasin induces itch by activating MRGPRX1/C11/A1 on peripheral neurons

Haifeng Yang 1Yian Chen 2Luyao Wang 2Bing Gan 3Leiye Yu 3Ruobing Ren 3Hang Fai Kwok 4Yingliang Wu 2Zhijian Cao 5

J Invest Dermatol. 2024 Jun 28:S0022-202X(24)01871-2.

PMID: 38945438
DOI: 10.1016/j.jid.2024.05.031

Abstract

Pruritus is the leading symptom of dermatophytosis. Microsporium canis is one of the predominant dermatophytes causing dermatophytosis. However, the pruritogenic agents and the related molecular mechanisms of the dermatophyte M. canis remain poorly understood. Here, the secretion of the dermatophyte M. canis was found to dose-dependently evoke itch in mice. The fungal peptide micasin secreted from M. canis was then identified to elicit mouse significant scratching and itching responses. The peptide micasin was further revealed to directly activate mouse dorsal root ganglia (DRG) neurons to mediate the non-histaminergic itch. Knockout and antagonistic experiments demonstrated that MRGPRX1/C11/A1 rather than MRGPRX2/b2 activated by micasin contributed to pruritus. The chimera and mutation of MRGPRX1 showed that three domains (ECL3, TMH3 and TMH6) and four hydrophobic residues (Y99, F237, L240 and W241) of MRGPRX1 played the key role in micasin-triggered MRGPRX1 activation. Our study sheds light on the dermatophytosis-associated pruritus and may provide potential therapeutic targets and strategies against pruritus caused by dermatophytes.

Keywords: Dermatophytosis; Fungal defensin; Itch; Microsporium canis; Mrgprs.

Journal Club: 2024.07.05

KCNQ1 is an essential mediator of the sex-dependent perception of moderate cold temperatures

Aytug K Kiper 1Sven Wegner 1Aklesso Kadala 2Susanne Rinné 1Sven Schütte 1Zoltán Winter 2Mirjam A R Bertoune 3Filip Touska 2Veronika Matschke 4Eva Wrobel 5Anne-Kathrin Streit 1Florian Lang 6Constanze Schmidt 7Eric Schulze-Bahr 8Martin K-H Schäfer 3Jakob Voelkl 9Guiscard Seebohm 4 8Katharina Zimmermann # 2Niels Decher # 1

Affiliations expand

Abstract

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.

Journal club 2024.06.28

Comprehensive Evaluation of Fourteen Docking Programs on Protein-Peptide Complexes

Gaoqi Weng 1Junbo Gao 1Zhe Wang 1Ercheng Wang 1Xueping Hu 1Xiaojun Yao 2Dongsheng Cao 3Tingjun Hou 1 4

Affiliations expand

Abstract

A large number of protein-protein interactions (PPIs) are mediated by the interactions between proteins and peptide segments binding partners, and therefore determination of protein-peptide interactions (PpIs) is quite crucial to elucidate important biological processes and design peptides or peptidomimetic drugs that can modulate PPIs. Nowadays, as a powerful computation tool, molecular docking has been widely utilized to predict the binding structures of protein-peptide complexes. However, although a number of docking programs have been available, the systematic study on the assessment of their performance for PpIs has never been reported. In this study, a benchmark data set called PepSet consisting of 185 protein-peptide complexes with peptide length ranging from 5 to 20 residues was employed to evaluate the performance of 14 docking programs, including three protein-protein docking programs (ZDOCK, FRODOCK, and HawkDock), three small molecule docking programs (GOLD, Surflex-Dock, and AutoDock Vina), and eight protein-peptide docking programs (GalaxyPepDock, MDockPeP, HPEPDOCK, CABS-dock, pepATTRACT, DINC, AutoDock CrankPep (ADCP), and HADDOCK peptide docking). A new evaluation parameter, named IL_RMSD, was proposed to measure the docking accuracy with fnat (the fraction of native contacts). In global docking, HPEPDOCK performs the best for the entire data set and yields the success rates of 4.3%, 24.3%, and 55.7% at the top 1, 10, and 100 levels, respectively. In local docking, overall, ADCP achieves the best predictions and reaches the success rates of 11.9%, 37.3%, and 70.3% at the top 1, 10, and 100 levels, respectively. It is expected that our work can provide some helpful insights into the selection and development of improved docking programs for PpIs. The benchmark data set is freely available at http://cadd.zju.edu.cn/pepset/.

Journal club 2024.06.21

Neuronal BST2: A Pruritic Mediator alongside Protease-Activated Receptor 2 in the IL-27eDriven Itch Pathway

Yanqing Li1, Weiwei Chen1, Xingyun Zhu1, Huiyuan Mei1, Martin Steinhoff2,3,4,5,6,7,
Joerg Buddenkotte2,3,4, Jinhai Wang1, Wenhao Zhang1, Zhenghui Li8, Xiaolong Dai1, Chunxu Shan9, Jiafu Wang9,10 and Jianghui Meng9,10

1School of Life Sciences, Henan University, Henan, China; 2Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; 3Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; 4Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; 5Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; 6College of Medicine, Qatar University, Doha, Qatar; 7Israel Englander Department of Dermatology, Weill Cornell Medicine, New York, New York, USA; 8Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; and 9School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland 10These authors contributed equally as senior authors.\

Correspondence: Jianghui Meng, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin Avenue, Dublin 9, Ireland. E-mail: Jianghui.meng@dcu.ie

Abbreviations: AD, atopic dermatitis; HC, healthy control; LAD, lesional atopic dermatitis; mTGN, murine trigeminal ganglionic neuron; PAR2, pro- tease-activated receptor 2; phKC, primary human keratinocyte; STAT, signal transducer and activator of transcription; Th, T helper

Received 29 October 2023; revised 11 January 2024; accepted 27 January 2024; accepted manuscript published online XXX; corrected proof published online XXX

Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease- activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuronespecific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.

Keywords: Atopic dermatitis, BST2, IL-27, itch, PAR2
Journal of Investigative Dermatology (2024) -, -e-; doi:10.1016/j.jid.2024.01.025

Journal club 2024.06.14

Molecular determinants for the chemical activation of the warmth-sensitive TRPV3 channel by the natural monoterpenoid carvacrol

Canyang Niu 1Xiaoying Sun 2Fang Hu 2Xiaowen Tang 3KeWei Wang 4

Affiliations expand

Abstract

Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood. Here, we describe the molecular determinants for chemical activation of TRPV3 by the agonist carvacrol. Patch clamp recordings reveal that carvacrol activates TRPV3 in a concentration-dependent manner, with an EC50 of 0.2 mM, by increasing the probability of single-channel open conformation. Molecular docking of carvacrol into cryo-EM structure of TRPV3 combined with site-directed mutagenesis further identified a unique binding pocket formed by the channel S2-S3 linker important for mediating this interaction. Within the binding pocket consisting of four residues (Ile505, Leu508, Arg509, and Asp512), we report that Leu508 is the most critical residue for the activation of TRPV3 by carvacrol, but not 2-APB, a widely used nonspecific agonist and TRP channel modulator. Our findings demonstrate a direct binding of carvacrol to TRPV3 by targeting the channel S2-S3 linker that serves as a critical domain for chemical-mediated activation of TRPV3. We also propose that carvacrol can function as a molecular tool in the design of novel specific TRPV3 modulators for the further understanding of TRPV3 channel pharmacology.

Keywords: 2-APB; TRPV3; amino acid mutation; carvacrol; molecular docking; surface structure.

Journal club: 2024.05.17

Pain. 2023 Jun 1; doi: 10.1097/j.pain.0000000000002824. 

Novel proresolving lipid mediator mimetic 3-oxa-PD1n-3 docosapentaenoic acid reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice

Kenta Furutani 1Ouyang Chen 1 2Aidan McGinnis 1Yuqing Wang 1Charles N Serhan 3Trond Vidar Hansen 4Ru-Rong Ji 1 2 5

Affiliations expand

Abstract

Specialized proresolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs and 3-oxa-PD1 n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). In this article, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T-cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, the antipruritic effect lasted for several weeks after 1-week intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. Cutaneous T-cell lymphoma increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch through the regulation of excitatory or inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.

Journal Club: 2024.05.10

Allergy. 2024 Mar 13. doi: 10.1111/all.16086. 

RNA-sequencing of paired tape-strips and skin biopsies in atopic dermatitis reveals key differences

Blaine Fritz 1Anne-Sofie Halling 2Isabel Díaz-Pinés Cort 1Maria Oberländer Christensen 2Amalie Thorsti Møller Rønnstad 2Caroline Meyer Olesen 2Mette Hjorslev Knudgaard 3Claus Zachariae 3 4Steffen Heegaard 4Jacob P Thyssen 2 4Thomas Bjarnsholt 1 5

Abstract

Background: Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD.

Methods: Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared.

Results: Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies.

Conclusions: This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.

Keywords: RNA sequencing; atopic dermatitis; biopsies; inflammation; tape-strips.

Journal Club: 2024.05.03

20-HETE mediated TRPV1 activation drives allokinesis via MrgprA3+ neurons in chronic dermatitis

Guang Yu1,2*, Pei Liu1*, Xiaobao Huang3*, Mingxin Qi2, Xue Li2, Weimeng Feng1, Erxin Shang1, Yuan Zhou2, Changming Wang2, Yan Yang2, Chan Zhu2, Fang Wang3, Zongxiang Tang2, Jinao Duan1

  1. Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.
  2. Key Laboratory for Chinese Medicine of Prevention and Treatment in Neurological Diseases, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
  3. Department of Dermatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

* Guang Yu, Pei Liu and Xiaobao Huang are co-first authors.

Corresponding author: Guang Yu, E-mail: yuguang@njucm.edu.cn; Zongxiang Tang, E-mail: tangzxlab@njucm.edu.cn; Jinao Duan, E-mail: dja@njucm.edu.cn (J.D.).

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Received: 2023.04.12; Accepted: 2024.01.26; Published: 2024.02.04

Abstract
Rationale: 
Noxious stimuli are often perceived as itchy in patients with chronic dermatitis (CD); however, itch and pain mechanisms of CD are not known.

Methods: TRPV1 involvement in CD was analyzed using a SADBE induced CD-like mouse model, and several loss- and gain-of-function mouse models. T rigeminal TRPV1 channel and Mrgpr A3+ neuron functions were analyzed by calcium imaging and whole-cell patch-clamp recordings. Lesional CD-like skin from mice were analyzed by unbiased metabolomic analysis. 20-HETE availability in human and mouse skin were determined by LC/MS and ELISA. And finally, HET0016, a selective 20-HETE synthase inhibitor, was used to evaluate if blocking skin TRPV1 activation alleviates CD-associated chronic itch or pain.

Results: While normally a pain inducing chemical, capsaicin induced both itch and pain in mice with CD condition. DREADD silencing of MrgprA3+ primary sensory neurons in these mice selectively decreased capsaicin induced scratching, but not pain-related wiping behavior. In the mice with CD condition, MrgprA3+ neurons showed elevated ERK phosphorylation. Further experiments showed that MrgprA3+ neurons from MrgprA3;Braf mice, which have constitutively active BRAF in MrgprA3+ neurons, were significantly more excitable and responded more strongly to capsaicin. Importantly, capsaicin induced both itch and pain in MrgprA3;Braf mice in an MrgprA3+ neuron dependent manner. Finally, the arachidonic acid metabolite 20-HETE, which can activate TRPV1, was significantly elevated in the lesional skin of mice and patients with CD. Treatment with the selective 20-HETE synthase inhibitor HET0016 alleviated itch in mice with CD condition.

Conclusion: Our results demonstrate that 20-HETE activates TRPV1 channels on sensitized MrgprA3+ neurons, and induces allokinesis in lesional CD skin. Blockade of 20-HETE synthesis or silencing of TRPV1-MrgprA3+ neuron signaling offers promising therapeutic strategies for alleviating CD-associated chronic itch.

Keywords: 20-HETE, TRPV1, allokinesis, MrgprA3+ neurons, chronic dermatitis

Journal Club: 2024.04.26

Vitexin inhibits pain and itch behavior via modulating TRPV4 activity in mice

Zhiqiang Qin a1, Lan Xiang a1, Siyu Zheng a1, Yuchen Zhao b, Yanyan Qin a, Lei Zhang a, Lanlan Zhou a

aSchool of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China bDepartment of Mathematics, University of California, Los Angeles, CA 90095, USA Received 6 March 2023, Revised 27 June 2023, Accepted 28 June 2023, Available online 3 July 2023, Version of Record 3 July 2023.

https://doi.org/10.1016/j.biopha.2023.115101

Abstract
Itching and pain are distinct unpleasant sensations. The transient receptor potential cation channel subfamily V member 4 (TRPV4) pathway is regarded as a shared pathway that mediates pain and itching. Vitexin (Mujingsu, MJS), a C-glycosylflavonoid, is an effective analgesic. This study aimed to explore the antinociceptive and anti-pruritic effects of MJS and whether its effects are mediated via the TRPV4 pathway. Mice were treated with MJS (7.5 mg/kg) 0.5 h prior to the initiation of the pain or itch modeling process. The results showed that MJS suppressed pain-like behavior in hot plate, thermal infiltration, glacial acetic acid twisting, and formalin tests. Administration of MJS decreased the pruritus response induced by histamine, C48/80, chloroquine and BAM8-22 within 30 min. MJS reduced scratching bouts and lessened the wiping reaction of mice under TRPV4 activation by GSK101 (10 µg/5 μl). MJS inhibited scratching behavior in acetone–ether–water (AEW)-treated mice within 60 min. An H1 receptor antagonist—chlorpheniramine (CLP, 400 mg/kg)—and a TRPV4 antagonist—HC067047 (250 ng/kg), exhibited similar effects to those of MJS. Moreover, MJS ameliorated dry skin itch-associated cutaneous barrier disruption in mice. MJS did not inhibit the expression of TRPV4 in the dorsal root ganglion neurons at L2–L3 in AEW mice. These results indicate that the analgesic and anti-pruritic effects of MJS in acute and chronic pain and itching, as well as itching caused by TRPV4 activation, could be attributed to the TRPV4 pathway modulation.

Scroll to Top