journal club – 14.10.27.

Propofol-induced pain sensation involves multiple mechanisms in sensory neurons

Rei Nishimoto & Makiko Kashio & Makoto Tominaga

Propofol

Received: 18 June 2014 / Revised: 22 September 2014 / Accepted: 25 September 2014 # Springer-Verlag Berlin Heidelberg 2014

Abstract Propofol, a commonly used intravenous anesthetic agent, is known to at times cause pain sensation upon injection in humans. However, the molecular mechanisms underlying this effect are not fully understood. Although propofol was reported to activate human transient receptor potential ankyrin 1 (TRPA1) in this regard, its action on human TRP vanilloid 1 (TRPV1), another nociceptive receptor, is unknown. Further- more, whether propofol activates TRPV1 in rodents is con- troversial. Here, we show that propofol activates human and mouse TRPA1. In contrast, we did not observe propofol- evoked human TRPV1 activation, while the ability of propofol to activate mouse TRPV1 was very small. We also found that propofol caused increases in intracellular Ca2+ concentrations in a considerable portion of dorsal root gangli- on (DRG) cells from mice lacking both TRPV1 and TRPA1, indicating the existence of TRPV1- and TRPA1-independent mechanisms for propofol action. In addition, propofol pro- duced action potential generation in a type A γ-amino butyric acid (GABAA) receptor-dependent manner. Finally, we found that both T-type and L-type Ca2+ channels are activated downstream of GABAA receptor activation by propofol. Thus, we conclude that propofol may cause pain sensation through multiple mechanisms involving not only TRPV1 and TRPA1 but also voltage-gated channels downstream of GABAA receptor activation.

Keywords Propofol . TRPV1 . TRPA1 . Voltage-gated Ca2+ channel . GABAA receptor

journal club 20-10-2014

Extracellular MicroRNAs Activate Nociceptor Neurons to Elicit Pain via TLR7 and TRPA1

Chul-Kyu Park,1,2 Zhen-Zhong Xu,1,2 Temugin Berta,1,2 Qingjian Han,1 Gang Chen,1 Xing-Jun Liu,1 and Ru-Rong Ji1,* 1Pain Signaling and Plasticity Laboratory, Departments of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
2Co-first authors

*Correspondence: ru-rong.ji@duke.edu http://dx.doi.org/10.1016/j.neuron.2014.02.011 Extracellular MicroRNAs Activate Nociceptor neurins to elicit pain via TLR7 and TRPV1

Intracellular microRNAs (miRNAs) are key regulators of gene expression. The role of extracellular miRNAs in neuronal activation and sensory behaviors are unknown. Here we report an unconventional role of extracellular miRNAs for rapid excitation of nocicep- tor neurons via toll-like receptor-7 (TLR7) and its coupling to TRPA1 ion channel. miRNA-let-7b induces rapid inward currents and action potentials in dorsal root ganglion (DRG) neurons. These re- sponses require the GUUGUGU motif, only occur in neurons coexpressing TLR7 and TRPA1, and are abolished in mice lacking Tlr7 or Trpa1. Furthermore, let-7b induces TLR7/TRPA1-dependent single-chan- nel activities in DRG neurons and HEK293 cells over- expressing TLR7/TRPA1. Intraplantar injection of let-7b elicits rapid spontaneous pain via TLR7 and TRPA1. Finally, let-7b can be released from DRG neurons by neuronal activation, and let-7b inhibitor reduces formalin-induced TRPA1 currents and spon- taneous pain. Thus, secreted extracellular miRNAs may serve as novel pain mediators via activating TLR7/TRPA1 in nociceptor neurons.

journal club 13-10-2014

B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway

Xian-Yu Liu12Li Wan12Fu-Quan Huo12Devin M Barry12Hui Li12Zhong-Qiu Zhao12and Zhou-Feng Chen1234

Abstract

Background

A recent study by Mishra and Hoon identified B-type natriuretic peptide (BNP) as an important peptide for itch transmission and proposed that BNP activates spinal natriuretic peptide receptor-A (NPRA) expressing neurons, which release gastrin releasing peptide (GRP) to activate GRP receptor (GRPR) expressing neurons to relay itch information from the periphery to the brain (Science340:968–971, 2013). A central premise for the validity of this novel pathway is the absence of GRP in the dorsal root ganglion (DRG) neurons. To this end, they showed that Grp mRNA in DRG neurons is either absent or barely detectable and claimed that BNP but not GRP is a major neurotransmitter for itch in pruriceptors. They showed that NPRA immunostaining is perfectly co-localized with Grp-eGFP in the spinal cord, and a few acute pain behaviors in Nppb-/- mice were tested. They claimed that BNP is an itch-selective peptide that acts as the first station of a dedicated neuronal pathway comprising a GRP-GRPR cascade for itch. However, our studies, along with the others, do not support their claims.

Findings

We were unable to reproduce the immunostaining of BNP and NPRA as shown by Mishra and Hoon. By contrast, we were able to detect Grp mRNA in DRGs using in situ hybridization and real time RT-PCR. We show that the expression pattern of Grp mRNA is comparable to that of GRP protein in DRGs. Pharmacological and genetic blockade of GRP-GRPR signaling does not significantly affect intrathecal BNP-induced scratching behavior. We show that BNP inhibits inflammatory pain and morphine analgesia.

Conclusions

Accumulating evidence demonstrates that GRP is a key neurotransmitter in pruriceptors for mediating histamine-independent itch. BNP-NPRA signaling is involved in both itch and pain and does not function upstream of the GRP-GRPR dedicated neuronal pathway. The site of BNP action in itch and pain and its relationship with GRP remain to be clarified.

Keywords:

BNP; NPRA; GRP; GRPR; Itch; Pain; Spinal cord; DRG

B type natriuretic peptide is neither itch specific nor

Journal Club 2014-10-06

1-s2.0-S156757691300297X-main
Filename : 1-s2-0-s156757691300297x-main.pdf (953 KB)
Caption :

Int Immunopharmacol. 2013 Nov;17(3):502-7. doi: 10.1016/j.intimp.2013.07.012. Epub 2013 Aug 9.

Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38.

Abstract

Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC.

© 2013.

KEYWORDS:

1-s2.0-S156757691300297X-mainPMID:

 

23938254

 

[PubMed – indexed for MEDLINE]
Scroll to Top