Journal Club 18.02.09.

Pharmacological evidence of involvement of nitric oxide pathway in anti-pruritic effects of sumatriptan in chloroquine-induced scratching in mice

Pharmacological evidence of involvement of nitric oxide pathway in anti-pruritic effects of sumatriptan in chloroquine-induced scratching in mice

Nazgol-Sadat Haddadia,b, Sattar Ostadhadia,b,c, Saeed Shakibaa,b, Khashayar Afsharia,b, Nastaran Rahimia,b, Arash Foroutana,b, Ahmad-Reza Dehpoura,b* aExperimental Medicine Research Center, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave., Tehran, Iran bDepartment of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poorsina St., Enghelab Ave., Tehran, Iran cBrain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Chamran highway, Bagherkhan St., Imam Khomeini Hospital, Tehran, Iran

Chloroquine (CQ) induces histamine-independent itch in human and mice. We recently reported the role of intradermal nitric oxide (NO)/cyclic guanosine monophosphate pathway in CQ-evoked scratching in mice. Chloroquine stimulates neuronal nitric oxide synthase (nNOS) activity to over-producing NO in the skin. Sumatriptan, a 5-hydroxytryptamine 1b/1d receptors (5-HTR1b/1d) agonist, is involved in pain and used to treat migraine and cluster headaches. According to previous studies, sumatriptan inhibits NOS activity. Thus, we aimed to investigate the effect of sumatriptan on CQ-induced scratching. We used the rostral back model of itch. Chloroquine was injected intradermally into the rostral back of NMRI mice, and the scratching behavior was evaluated by measuring the number of bouts over 30 min. We evaluated the effect of sumatriptan and combination of sumatriptan and a non-selective NO synthase inhibitor, L-N-nitro arginine methyl ester (L-NAME), on the scratching behavior. Additionally, the changes of skin, hip- pocampus, and cortical nitrite level after different treatments were studied. Intraperitoneal and intradermal sumatriptan attenuates CQ-induced itch which reversed by GR-127935, the selective 5-HTR1b and 5-HTR1d antagonist. Co- administration of subeffective doses of sumatriptan and L-NAME significantly decreases the scratching behavior. Intradermal injection of CQ significantly increases the intradermal nitrite levels while it does not have any significant effects on hippocampal or cortical nitrite concentrations. Likewise, the effective doses of intraperitoneal and intradermal sumatriptan significantly reduce intradermal nitrite levels. We concluded that sumatriptan suppresses CQ-induced itch most likely by activating 5-HT1b/1d receptors. This effect probably mediates through NO pathway.

2018.2.2

TRPV3 Channel in Keratinocytes in Scars with Post-Burn Pruritus.

Park CW, et al. Int J Mol Sci. 2017.

Abstract

Post-burn pruritus is a common and distressing sequela of burn scars. Empirical antipruritic treatments usually fail to have a satisfactory outcome because of their limited selectivity and possible side effects. Therefore, novel drug targets need to be identified. Here, we aimed to investigate the possible role of protease-activated receptor 2 (PAR2) and transient receptor potential vanniloid 3 (TRPV3), along with the relation of TRPV3 to thymic stromal lymphopoietin (TSLP). Specimens from normal (unscarred) or burn-scarred (with or without pruritus) tissue were obtained from burn patients for this study. In each sample, the keratinocytes were isolated and cultured, and the intracellular Ca2+ level at the time of stimulation of each factor was quantified and the interaction was screened. PAR2 function was reduced by antagonism of TRPV3. Inhibiting protein kinase A (PKA) and protein kinase C (PKC) reduced TRPV3 function. TSLP mRNA and protein, and TSLPR protein expressions, increased in scars with post-burn pruritus, compared to scars without it or to normal tissues. In addition, TRPV1 or TRPV3 activation induced increased TSLP expression. Conclusively, TRPV3 may contribute to pruritus in burn scars through TSLP, and can be considered a potential therapeutic target for post-burn pruritus.

20180202 YSH

Scroll to Top