2019.11.29 Journal club

Brain allopregnanolone induces marked scratching behaviour in diet-induced atopic dermatitis mouse model

Abstract

Allopregnanolone (ALLO) is a neurosteroid produced in the brain, but so far, no study has explored its link with itching. Herein, we used a diet-induced atopic dermatitis mouse model to examine whether exogenously administered and endogenously produced ALLO contribute to inducing scratching. Systemic administration of ALLO elicited robust scratching in the atopic dermatitis model, while it did not affect spontaneous and pruritogen-induced scratching in normal mice. ALLO caused scratching when administered intracisternally, but not when administered intrathecally or intradermally, suggesting the involvement of supraspinal mechanisms. Pharmacological analyses suggested that both γ-aminobutyric acid type A receptor activation and serotonin type 3 receptor inhibition were involved in ALLO-induced scratching. We next examined whether endogenously produced ALLO is involved in ethanol-induced scratching in atopic dermatitis mice, because ethanol administration increases ALLO in rodent brain. Acute ethanol administration increased brain ALLO levels, which coincided with increased scratching. Pre-treatment with finasteride, a synthetic ALLO inhibitor, suppressed ethanol-induced scratching and ALLO production in the brain. Collectively, our results demonstrated for the first time that ALLO administration caused marked scratching in atopic dermatitis mice, and ethanol-induced scratching may be mediated through endogenously produced brain ALLO.

2019.11.08 Journal Club

miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus

QingjianHan14DiLiu14MarinoConvertino2ZilongWang1ChangyuJiang1Yong HoKim1XinLuo1XinZhang1AndreaNackley1Nikolay V.Dokholyan25Ru-RongJi136

Summary

Increasing evidence suggests that extracellular miRNAs may serve as biomarkers of diseases, but the physiological relevance of extracellular 
miRNA  is unclear. We find that intradermal cheek injection of miR-711 induces TRPA1-depedent itch (scratching) without pain (wiping) in naive mice. Extracellular perfusion of miR-711 induces TRPA1 currents in both Trpa1-expressing heterologous cells and native sensory neurons through the core sequence GGGACCC. Computer simulations reveal that the core sequence binds several residues at the extracellular S5-S6 loop of TRPA1, which are critical for TRPA1 activation by miR-711 but not allyl isothiocyanate. Intradermal inoculation of human Myla cells induces lymphoma and chronic itch in immune-deficient mice, associated with increased serum levels of miR-711, secreted from cancer cells. Lymphoma-induced chronic itch is suppressed by miR-711 inhibitor and a blocking peptide that disrupts the miR-711/TRPA1 interaction. Our findings demonstrated an unconventional physiological role of extracellular naked miRNAs as itch mediators and ion channel modulators.

2019.11.01

Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis.

Walsh CM1Hill RZ1Schwendinger-Schreck J1Deguine J1Brock EC1Kucirek N1Rifi Z1Wei J2Gronert K2Brem RB3Barton GM1Bautista DM1.

Abstract

Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.

KEYWORDS: 

immunology; inflammation; mouse; neuroscience

Scroll to Top