2020.06.26 Journal club

The nonselective cation channel TRPV4 inhibits angiotensin II receptors

Nicholas W. Zaccor, Charlotte J. Sumner, Solomon H. Snyder

Abstract

G protein-coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways, the exchange of GDP to GTP by linked G proteins and the recruitment of β-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of non-selective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well explored. Here, using an array of biochemical approaches, including immunoprecipitation and -fluorescence, calcium imaging, phosphate radiolabeling, and a β-Arrestin dependent luciferase assay, we characterize a GPCR-TRP channel pair, angiotensin II receptor type 1 (AT1R) and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners, and that activation of AT1R by angiotensin II (ANGII) elicits β-arrestin-dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited ANGII-mediated G-protein associated second messenger accumulation, AT1R receptor phosphorylation and β-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin dependent manner, preventing β-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.

2020.06.12 JOURNAL CLUB

Typical antimicrobials induce mast cell degranulation and anaphylactoid reactions via MRGPRX2 and its murine homologue MRGPRB2

ABSTRACT

Mast cells are unique immune cells that function as sentinels in host defence reactions, including immediate hypersensitivity responses and allergic responses. The mast cell-specific receptor named MAS-related G protein-coupled receptor X2 (MRGPRX2) triggers mast-cell degranulation, a key process in anaphylactoid reactions. It is widely observed that antimicrobials can induce pseudo-allergic reactions (i.e. IgE-independent mechanism) with symptoms ranging from skin inflammation to life-threatening systemic anaphylaxis. However, their direct involvement and the mechanisms underlying anaphylactoid reactions caused by antimicrobials have not been demonstrated. Structurally different antimicrobials were screened by Ca2+ imaging using MRGPRX2 overexpressing HEK293 cells. MRGPRX2 related anaphylactoid reactions induced by these components were investigated by body temperature drop and mast cell degranulation assays. We showed that MRGPRX2 is involved in allergic-like reactions to three types of antimicrobials in a dose-dependent manner. However, mast cells lacking the receptor show reduced degranulation. Furthermore, mice without MAS-related G protein-coupled receptor B2 (the orthologous gene of MRGPRX2) exhibited reduced substance-induced inflammation. Interestingly, β-lactam and antiviral nucleoside analogues did not induce anaphylactic reactions, which were also observed in vitro. These results should alarm many clinicians that such drugs might induce anaphylactoid reactions and provide guidance on safe dosage of these drugs.

Keywords: Anaphylactoid reaction Antimicrobials Degranulation Mast Cells Mrgprx2

2020.06.05 Journal club

Spinal-cord-NLRP1-inflommsome-open-access-contributes-to-dry-skin-induced-chronic-itch-in-mice

Abstract
Background: Dry skin itch is one of the most common skin diseases and elderly people are believed to be particularly prone to it. The inflammasome has been suggested to play an important role in chronic inflammatory disorders including inflammatory skin diseases such as psoriasis. However, little is known about the role of NLRP1 inflammasome in dry skin-induced chronic itch.
Methods: Dry skin-induced chronic itch model was established by acetone-ether-water (AEW) treatment. Spontaneous scratching behavior was recorded by video monitoring. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes, transient receptor potential vanilloid type 1 (TRPV1), and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA- eGFP infusion. H.E. staining was used to evaluate skin lesion.
Results: AEW treatment triggers spontaneous scratching and significantly increases the expression of NLRP1, ASC, and caspase-1 and the levels of IL-1β, IL-18, IL-6, and TNF-α in the spinal cord and the skin of mice. Spinal cord Nlrp1a knockdown prevents AEW-induced NLRP1 inflammasome assembly, TRPV1 channel activation, and spontaneous scratching behavior. Capsazepine, a specific antagonist of TRPV1, can also inhibit AEW-induced inflammatory response and scratching behavior. Furthermore, elderly mice and female mice exhibited more significant AEW-induced scratching behavior than young mice and male mice, respectively. Interestingly, AEW-induced increases in the expression of NLRP1 inflammasome complex and the levels of inflammatory cytokines were more remarkable in elderly mice and female mice than in young mice and male mice, respectively.
Conclusions: Spinal cord NLRP1 inflammasome-mediated inflammatory response contributes to dry skin-induced chronic itch by TRPV1 channel, and it is also involved in age and sex differences of chronic itch. Inhibition of NLRP1 inflammasome may offer a new therapy for dry skin itch.
Keywords: NLRP1 inflammasome, TRPV1, Chronic itch, Dry skin, Spinal cord

Scroll to Top