2020.07.31 Journal Club

Irritant-evoked activation and calcium modulation of the TRPA1 receptor

Jianhua ZhaoJohn V. Lin KingCandice E. PaulsenYifan Cheng & David Julius

Abstract

The transient receptor potential ion channel TRPA1 is expressed by primary afferent nerve fibres, in which it functions as a low-threshold sensor for structurally diverse electrophilic irritants, including small volatile environmental toxicants and endogenous algogenic lipids1. TRPA1 is also a ‘receptor-operated’ channel whose activation downstream of metabotropic receptors elicits inflammatory pain or itch, making it an attractive target for novel analgesic therapies2. However, the mechanisms by which TRPA1 recognizes and responds to electrophiles or cytoplasmic second messengers remain unknown. Here we use strutural studies and electrophysiology to show that electrophiles act through a two-step process in which modification of a highly reactive cysteine residue (C621) promotes reorientation of a cytoplasmic loop to enhance nucleophilicity and modification of a nearby cysteine (C665), thereby stabilizing the loop in an activating configuration. These actions modulate two restrictions controlling ion permeation, including widening of the selectivity filter to enhance calcium permeability and opening of a canonical gate at the cytoplasmic end of the pore. We propose a model to explain functional coupling between electrophile action and these control points. We also characterize a calcium-binding pocket that is highly conserved across TRP channel subtypes and accounts for all aspects of calcium-dependent TRPA1 regulation, including potentiation, desensitization and activation by metabotropic receptors. These findings provide a structural framework for understanding how a broad-spectrum irritant receptor is controlled by endogenous and exogenous agents that elicit or exacerbate pain and itch.

https://www.nature.com/articles/s41586-020-2480-9.pdf

2020.07.24 Journal Club

Differential Coding of Itch and Pain by aSubpopulation of Primary Afferent Neurons

Behrang Sharif, Ariel R. Ase, Alfredo Ribeiro-da-Silva, Philippe Séguéla

Itch and pain are distinct unpleasant sensations that can be triggered from the same receptive fields in the skin, raising the question of how pruriception and nociception are coded and discriminated. Here, we tested the multimodal capacity of peripheral first-order neurons, focusing on the genetically defined subpopulation of mouse C-fibers that express the chloroquine receptor MrgprA3. Using optogenetics, chemogenetics, and pharmacology, we assessed the behavioral effects of their selective stimulation in a wide variety of conditions. We show that metabotropic Gq-linked stimulation of these C-afferents, through activation of native MrgprA3 receptors or DREADDs, evokes stereotypical pruriceptive rather than nocifensive behaviors. In contrast, fast ionotropic stimulation of these same neurons through light-gated cation channels or native ATP-gated P2X3 channels predominantly evokes nocifensive rather than pruriceptive responses. We conclude that C-afferents display intrinsic multimodality, and we provide evidence that optogenetic and chemogenetic interventions on the same neuronal populations can drive distinct behavioral outputs.

2020.07.17 Journal club

Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects

Hiroki Kittaka1 & Yu Yamanoi1,2,3 & Makoto Tominaga1,2,4

Received: 21 January 2017 / Revised: 2 May 2017 / Accepted: 12 May 2017 / Published online: 13 June 2017 # Springer-Verlag Berlin Heidelberg 2017

Abstract The sensation of itching can be defined as Ban un- pleasant cutaneous sensation that provokes a desire to scratch.^ The perception of itching is not critical for the main- tenance of life, but persistent itching can be extremely irritat- ing and decreases the quality of life. Crotamiton (N-ethyl-o- crotonotoluidide) has been used as an anti-itch agent for humans for around 70 years. In spite of the long use of crotamiton, its mechanism of action remains unknown. We hypothesized that crotamiton might have effects on transient receptor potential (TRP) channels expressed in the peripheral nervous system and the skin. We first examined the effects of crotamiton on TRP channels by whole-cell patch-clamp re- cordings. We found that crotamiton strongly inhibited TRPV (vanilloid) 4 channels followed by large currents after crotamiton washout. In mice, crotamiton inhibited itch- related behaviors induced by a TRPV4-selective agonist (GSK1016790A). We biophysically investigated the large TRPV4 currents after crotamiton washout. Comparing single-channel open probabilities and current amplitudes of TRPV4, increases in both parameters were found to contribute to the large washout currents of TRPV4. Because the change in current amplitudes suggested pore dilation of TRPV4, we examined this possibility with cation replacement experiments and by measuring changes in reversal potentials. Greater cat- ion influxes and changes in reversal potentials upon crotamiton washout were observed, suggesting that the TRPV4 pore dilated in its uninhibited state. From these re- sults, we identified the molecular target of crotamiton as TRPV4 and demonstrated pore dilation of TRPV4 upon crotamiton washout.

Keywords Crotamiton . TRPV4 . Pore dilation . Itch

2020.07.10 JOURNAL CLUB

Osthole, a Natural Plant Derivative Inhibits MRGPRX2 Induced Mast Cell Responses

Abstract

Mast cells are tissue-resident innate immune cells known for their prominent role in mediating allergic reactions. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a promiscuous G-protein coupled receptor (GPCR) expressed on mast cells that are activated by several ligands that share cationic and amphipathic properties. Interestingly, MRGPRX2 ligands include certain FDA-approved drugs, antimicrobial peptides, and neuropeptides. Consequently, this receptor has been implicated in causing mast cell-dependent pseudo-allergic reactions to these drugs and chronic inflammation associated with asthma, urticaria and rosacea in humans. In the current study, we examined the role of osthole, a natural plant coumarin, in regulating mast cell responses when activated by the MRGPRX2 ligands, including compound 48/80, the neuropeptide substance P, and the cathelicidin LL-37. We demonstrate that osthole attenuates both the early (Ca2C mobilization and degranulation) and delayed events (chemokine/cytokine production) of mast cell activation via MRGPRX2 in vitro. Osthole also inhibits MrgprB2- (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Molecular docking analysis suggests that osthole does not compete with the MRGPRX2 ligands for interaction with the receptor,
but rather regulates MRGPRX2 activation via allosteric modifications. Furthermore, flow cytometry and confocal microscopy experiments reveal that osthole reduces both surface and intracellular expression levels of MRGPRX2 in mast cells. Collectively, our data demonstrate that osthole inhibits MRGPRX2/MrgprB2-induced mast cell responses and provides a rationale for the use of this natural compound as a safer alternative treatment for pseudo-allergic reactions in humans.

Keywords: mast cells, pseudo-allergic reactions, osthole, MAS-related G-protein coupled receptor-X2, MrgprB2

2020.07.03

Antipruritic Effect of Ethyl Acetate Extract from Fructus cnidii in Mice with 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis.

Abstract

Atopic dermatitis (AD) is a common inflammatory skin disease characterized by intense pruritus and skin lesions. The exact cause of AD is not yet known and the available therapeutic strategies for AD are limited. Fructus cnidii is commonly used in traditional Chinese medicine as an herb for treating chronic itch. However, the mechanism underlying the antipruritic effects of Fructus cnidii is not well understood. In the present study, we investigated the antipruritic effect of locally administered ethyl acetate extract from Fructus cnidii (EAEFC) to 2,4-dinitrofluorobenzene- (DNFB-) induced AD in a mouse model. The scratching behavior, skin thickness, dermatitis score, weight, blood immunoglobulin E (IgE) level, and itch-related cytokine levels were subsequently monitored and evaluated. Results showed that EAEFC treatment attenuated the DNFB-induced AD-like symptoms by alleviating the skin lesions and decreasing the dermatitis score. Hematoxylin and eosin (H&E) and toluidine blue (TB) staining analyses demonstrated that EAEFC mitigated the DNFB-induced increase in skin thickness and prevented the infiltration of mast cells. Behavioral tests showed that EAEFC decreased the DNFB-induced acute and chronic scratching behaviors. Furthermore, EAEFC reduced the levels of itch-related cytokines, such as thymic stromal lymphopoietin (TSLP), interleukin- (IL-) 17, IL-33, and IL-31, and the DNFB-induced boost in serum IgE. Collectively, these results suggest that EAEFC is a potential therapeutic candidate for the treatment of chronic itch in AD.

Scroll to Top