Journal Club-2022.04.29

The role of PTEN in primary sensory neurons in processing itch and thermal information in mice

Published in :- Cell reports ; I.F.:- 9.423

Abstract

PTEN is known as a tumor suppressor and plays essential roles in brain development. Here, we report that PTEN in primary sensory neurons is involved in processing itch and thermal information in adult mice. Dele- tion of PTEN in the dorsal root ganglia (DRG) is achieved in adult Drg11-CreER: PTENflox/flox (PTEN CKO) mice with oral administration of tamoxifen, and CKO mice develop pathological itch and elevated itch responses on exposure to various pruritogens. PTEN deletion leads to ectopic expression of TRPV1 and MrgprA3 in IB4+ non-peptidergic DRG neurons, and the TRPV1 is responsive to capsaicin. Importantly, the elevated itch re- sponses are no longer present in Drg11-CreER: PTENflox/flox: TRPV1flox/flox (PTEN: TRPV1 dCKO) mice. In addi- tion, thermal stimulation is enhanced in PTEN CKO mice but blunted in dCKO mice. PTEN-involved regulation of itch-related gene expression in DRG neurons provides insights for understanding molecular mechanism of itch and thermal sensation at the spinal level.

Journal club-2022.04.15.

Lysophosphatidic acid activates nociceptors and causes pain or itch depending on the application mode in human skin

Miriam M Düll Martina Stengel Vivien Ries Marion Strupf Peter W Reeh Andreas E Kremer Barbara Namer 

Abstract

Lysophosphatidic acid (LPA) is involved in the pathophysiology of cholestatic pruritus and neuropathic pain. Slowly conducting peripheral afferent C-nerve fibers are crucial in the sensations of itch and pain. In animal studies, specialized neurons (“pruriceptors”) have been described, expressing specific receptors, eg, from the Mas-related G-protein-coupled receptor family. Human nerve fibers involved in pain signaling (“nociceptors”) can elicit itch if activated by focalized stimuli such as cowhage spicules. In this study, we scrutinized the effects of LPA in humans by 2 different application modes on the level of psychophysics and single nerve fiber recordings (microneurography). In healthy human subjects, intracutaneous LPA microinjections elicited burning pain, whereas LPA application through inactivated cowhage spicules evoked a moderate itch sensation. Lysophosphatidic acid microinjections induced heat hyperalgesia and hypersensitivity to higher electrical stimulus frequencies. Pharmacological blockade of transient receptor potential channel A1 or transient receptor potential channel vanilloid 1 reduced heat hyperalgesia, but not acute chemical pain. Microneurography revealed an application mode-dependent differential activation of mechanosensitive (CM) and mechanoinsensitive C (CMi) fibers. Lysophosphatidic acid microinjections activated a greater proportion of CMi fibers and more strongly than CM fibers; spicule application of LPA activated CM and CMi fibers to a similar extent but excited CM fibers more and CMi fibers less intensely than microinjections. In conclusion, we show for the first time in humans that LPA can cause pain as well as itch dependent on the mode of application and activates afferent human C fibers. Itch may arise from focal activation of few nerve fibers with distinct spatial contrast to unexcited surrounding afferents and a specific combination of activated fiber subclasses might contribute.

Keywords: Lysophosphatidic acid, C- fibers, Microneurography, Psychophysics, TRPV1, TRPA1, Itch, Neuropathic pain, Cholestatic pruritus

Journal Club 2022.04.08

Mast cells instruct keratinocytes to produce thymic stromal lymphopoietin: Relevance of the tryptase/protease-activated receptor 2 axis

Davender Redhu, PhD,a Kristin Franke, PhD,a Marina Aparicio-Soto, PhD,a Vandana Kumari, PhD,a Kristijan Pazur, PhD,a Anja Illerhaus, PhD,b Karin Hartmann, MD,c,d Margitta Worm, MD,a and Magda Babina, PhDa Berlin and Cologne, Germany; and Basel, Switzerland

Background: Thymic stromal lymphopoietin (TSLP) promotes TH2 inflammation and is deeply intertwined with inflammatory dermatoses like atopic dermatitis. The mechanisms regulating TSLP are poorly defined.

Objective: We investigated whether and by what mechanisms mast cells (MCs) foster TSLP responses in the cutaneous environment.
Methods: Ex vivo and in vivo skin MC degranulation was induced by compound 48/80 in wild-type protease-activated receptor 2 (PAR-2)- and MC-deficient mice in the presence or absence of neutralizing antibodies, antagonists, or exogenous mouse MC protease 6 (mMCP6). Primary human keratinocytes and murine skin explants were stimulated with lysates/supernatants of human skin MCs, purified tryptase, or MC lysate diminished of tryptase. Chymase and histamine were also used. TSLP was quantified by ELISA, real-time quantitative PCR, and immunofluorescence staining.
Results: Mas-related G protein–coupled receptor X2 (Mrgprb2) activation elicited TSLP in intact skin, mainly in the epidermis. Responses were strictly MC dependent and relied on PAR-2. Complementarily, TSLP was elicited by tryptase in murine skin explants. Exogenous mMCP6 could fully restore responsiveness in MC-deficient murine skin explants. Conversely, PAR-2 knockout mice were unresponsive to mMCP6 while displaying increased responsiveness to other inflammatory pathways, such as IL-1a. Indeed, IL-1a acted in concert with tryptase. In primary human keratinocytes, MC-elicited TSLP generation was likewise abolished by tryptase inhibition or elimination. Chymase and histamine did not affect TSLP production, but histamine triggered IL-6, IL- 8, and stem cell factor.
Conclusion: MCs communicate with kerationocytes more broadly than hitherto suspected. The tryptase/PAR-2 axis is a crucial component of this cross talk, underlying MC-dependent stimulation of TSLP in neighboring kerationocytes. Interference specifically with MC tryptase may offer a treatment option for disorders initiated or perpetuated by aberrant TSLP, such as atopic dermatitis. (J Allergy Clin Immunol 2022;nnn:nnn-nnn.)

Key words: Atopic dermatitis, interleukin 1, keratinocytes, mast cells, PAR-2, TSLP, tryptase

Journal Club-2022.04.01

Slick Potassium Channels Control Pain and Itch in Distinct Populations of Sensory and Spinal Neurons in Mice

Published in :- Journal of Anesthesiology, I.F.- 7.89

Abstract

Background: Slick, a sodium-activated potassium channel, has been recently identified in somatosensory pathways, but its functional role is poorly understood. The authors of this study hypothesized that Slick is involved in processing sensations of pain and itch.

Methods: Immunostaining, in situ hybridization, Western blot, and real-time quantitative reverse transcription polymerase chain reaction were used to investigate the expression of Slick in dorsal root ganglia and the spinal cord. Mice lacking Slick globally (Slick–/–) or conditionally in neurons of the spinal dorsal horn (Lbx1-Slick–/–) were assessed in behavioral models.

Results: The authors found Slick to be enriched in nociceptive Aδ-fibers and in populations of interneurons in the spinal dorsal horn. Slick–/– mice, but not Lbx1-Slick–/– mice, showed enhanced responses to noxious heat in the hot plate and tail-immersion tests. Both Slick–/– and Lbx1-Slick–/– mice demonstrated prolonged paw licking after capsaicin injection (mean ± SD, 45.6±30.1s [95% CI, 19.8 to 71.4]; and 13.1±16.1s [95% CI, 1.8 to 28.0]; P = 0.006 [Slick–/– {n = 8} and wild-type {n = 7}, respectively]), which was paralleled by increased phosphorylation of the neuronal activity marker extracellular signal–regulated kinase in the spinal cord. In the spi- nal dorsal horn, Slick is colocalized with somatostatin receptor 2 (SSTR2), and intrathecal preadministration of the SSTR2 antagonist CYN-154806 pre- vented increased capsaicin-induced licking in Slick–/– and Lbx1-Slick–/– mice. Moreover, scratching after intrathecal delivery of the somatostatin analog octreotide was considerably reduced in Slick–/– and Lbx1-Slick–/– mice (Slick–/– [n = 8]: 6.1 ± 6.7 bouts [95% CI, 0.6 to 11.7]; wild-type [n =8]: 47.4 ± 51.1 bouts [95% CI, 4.8 to 90.2]; P = 0.039).

Conclusions: Slick expressed in a subset of sensory neurons modulates heat-induced pain, while Slick expressed in spinal cord interneurons inhibits capsaicin-induced pain but facilitates somatostatin-induced itch.

Scroll to Top