Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1

Ningyong Xu, Donna L. Cioffi, Mikhail Alexeyev, Thomas C. Rich, and Troy Stevens

Abstract

Orai1 interacts with transient receptor potential protein of the canonical subfamily (TRPC4) and contributes to calcium selectivity of the endothelial cell store-operated calcium entry current (ISOC). Orai1 silencing increases sodium permeability and decreases membraneassociated calcium, although it is not known whether Orai1 is an important determinant of cytosolic sodium transitions. We test the hypothesis that, upon activation of store-operated calcium entry channels, Orai1 is a critical determinant of cytosolic sodium transitions. Activation of store-operated calcium entry channels transiently increased cytosolic calcium and sodium, characteristic of release from an intracellular store. The sodium response occurred more abruptly and returned to baseline more rapidly than did the transient calcium
rise. Extracellular choline substitution for sodium did not inhibit the response, although 2-aminoethoxydiphenyl borate and YM-58483 reduced it by 50%. After this transient response, cytosolic sodium continued to increase due to influx through activated store-operated calcium entry channels. The magnitude of this sustained increase in cytosolic sodium was greater when experiments were conducted in low extracellular calcium and when Orai1 expression was silenced; these two interventions were not additive, suggesting a common mechanism. 2-Aminoethoxydiphenyl borate and YM-58483 inhibited the sustained increase in cytosolic sodium, only in the presence of Orai1. These studies demonstrate that sodium permeates activated store-operated calcium entry channels, resulting in an increase in cytosolic sodium; the magnitude of this response is determined by Orai1.

Sodium entry through endothelial store-operated calcium entry channels: regulation by Orai1 Read More »

2022.12.02

Novel pro-resolving lipid mediator mimetic 3-oxa-PD1n-3 DPA reduces acute and chronic itch by modulating excitatory and inhibitory synaptic transmission and astroglial secretion of lipocalin-2 in mice

Furutani, Kenta; Chen, Ouyang; McGinnis, Aidan; Wang, Yuqing; Serhan, Charles N; Hansen, Trond Vidar; Ji, Ru-Rong Ji

Abstract

Specialized pro-resolving mediators (SPMs) have demonstrated potent analgesic actions in animal models of pathological pain. The actions of SPMs in acute and chronic itch are currently unknown. Recently, n-3 docosapentaenoic acid (DPA) was found to be a substrate for the biosynthesis of several novel families of SPMs; 3-oxa-PD1n-3 DPA (3-oxa-PD1) is an oxidation-resistant metabolic stable analogue of the n-3 DPA-derived protectin D1 (PD1). Herein, we demonstrate that 3-oxa-PD1 effectively reduces both acute and chronic itch in mouse models. Intrathecal injection of 3-oxa-PD1 (100 ng) reduced acute itch induced by either histamine, chloroquine, or morphine. Furthermore, intrathecal 3-oxa-PD1 effectively reduced chronic itch, induced by cutaneous T cell lymphoma (CTCL), allergic contact dermatitis with dinitrofluorobenzene, and psoriasis by imiquimod. Intratumoral injection of 3-oxa-PD1 also suppressed CTCL-induced chronic itch. Strikingly, this anti-pruritic effect lasted for several weeks after 1-week of intrathecal 3-oxa-PD1 treatment. Whole-cell recordings revealed significant increase in excitatory postsynaptic currents in spinal dorsal horn (SDH) neurons of CTCL mice, but this increase was blocked by 3-oxa-PD1. 3-oxa-PD1 further increased inhibitory postsynaptic currents in SDH neurons of CTCL mice. CTCL increased the spinal levels of lipocalin-2 (LCN2), an itch mediator produced by astrocytes. 3-oxa-PD1 suppressed LCN2 production in CTCL mice and LCN2 secretion in astrocytes. Finally, CTCL-induced anxiety was alleviated by intrathecal 3-oxa-PD1. Our findings suggest that 3-oxa-PD1 potently inhibits acute and chronic itch via regulation of excitatory/inhibitory synaptic transmission and astroglial LCN2 production. Therefore, stable SPM analogs such as 3-oxa-PD1 could be useful to treat pruritus associated with different skin injuries.

2022.12.02 Read More »

Scroll to Top