Journal Club-2022.09.23

miRNA-203b-3p induces acute and chronic pruritus via 5-HTR2B and TRPV4

Francesco De Logu, Roberto Maglie, Mustafa Titiz, Giulio Poli, Lorenzo Landini, Matilde Marini, Daniel Souza Monteiro de Araujo, Gaetano De Siena, Marco Montini, Daniela Almeida Cabrini, Michel Fleith Otuki, Priscila Lúcia Pawloski, Emiliano Antiga, Tiziano Tuccinardi, João Batista Calixto, Pierangelo Geppetti, Romina Nassini, Eunice André

Abstract

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch via TRP channels signaling are poorly understood. Herein, we show that genetic deletion or pharmacological antagonism of TRP vanilloid 4 (TRPV4) attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several miRNAs, including the miR-203b-3p, which induced a Ca2+ response in rodent dorsal root ganglion neurons and scratching behavior in mice via serotonin receptor 2B (5-HTR2B) activation and the protein kinase C-dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch, targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular miRNA that can behave as an itch promoter via 5-HTR2B and TRPV4.

Keywords: itch; miRNA; neurons; scratching behavior; skin diseases.

Journal Club-2022.09.02

PIEZO1 transduces mechanical itch in mice

Rose Z Hill 1Meaghan C Loud 1Adrienne E Dubin 2Brooke Peet 1Ardem Patapoutian 3

1Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.

2Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.

3Howard Hughes Medical Institute, Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA. ardem@scripps.edu.

Abstract

Itch triggers scratching, a behavioural defence mechanism that aids in the removal of harmful irritants and parasites1. Chemical itch is triggered by many endogenous and exogenous cues, such as pro-inflammatory histamine, which is released during an allergic reaction1. Mechanical itch can be triggered by light sensations such as wool fibres or a crawling insect2. In contrast to chemical itch pathways, which have been extensively studied, the mechanisms that underlie the transduction of mechanical itch are largely unknown. Here we show that the mechanically activated ion channel PIEZO1 (ref. 3) is selectively expressed by itch-specific sensory neurons and is required for their mechanically activated currents. Loss of PIEZO1 function in peripheral neurons greatly reduces mechanically evoked scratching behaviours and both acute and chronic itch-evoked sensitization. Finally, mice expressing a gain-of-function Piezo1 allele4 exhibit enhanced mechanical itch behaviours. Our studies reveal the polymodal nature of itch sensory neurons and identify a role for PIEZO1 in the sensation of itch.

https://www.nature.com/articles/s41586-022-04860-5#additional-information

Presenter: Hyein Kim

2022.08.12

IL-31 levels correlate with pruritus in patients with cholestatic and metabolic liver diseases and is farnesoid X receptor responsive in NASH

Jun Xu Ya Wang Mina Khoshdeli Matt Peach Jen-Chieh Chuang Julie Lin Wen-Wei Tsai Sangeetha Mahadevan Wesley Minto Lauri Diehl Ruchi Gupta Michael Trauner Keyur Patel Mazen Noureddin Kris V Kowdley Aliya Gulamhusein Christopher L Bowlus Ryan S Huss Robert P Myers Chuhan Chung Andrew N Billin 

Abstract

Background and aims: Pruritus is associated with multiple liver diseases, particularly those with cholestasis, but the mechanism remains incompletely understood. Our aim was to evaluate serum IL-31 as a putative biomarker of pruritus in clinical trials of an farnesoid X receptor (FXR) agonist, cilofexor, in patients with NASH, primary sclerosing cholangitis (PSC), and primary biliary cholangitis (PBC).

Approach and results: Serum IL-31 was measured in clinical studies of cilofexor in NASH, PSC, and PBC. In patients with PSC or PBC, baseline IL-31 was elevated compared to patients with NASH and healthy volunteers (HVs). IL-31 correlated with serum bile acids among patients with NASH, PBC, and PSC. Baseline IL-31 levels in PSC and PBC were positively correlated with Visual Analog Scale for pruritus and 5-D itch scores. In patients with NASH, cilofexor dose-dependently increased IL-31 from Week (W)1 to W24. In patients with NASH receiving cilofexor 100 mg, IL-31 was higher in those with Grade 2-3 pruritus adverse events (AEs) than those with Grade 0-1 pruritus AEs. IL-31 weakly correlated with C4 at baseline in patients with NASH, and among those receiving cilofexor 100 mg, changes in IL-31 and C4 from baseline to W24 were negatively correlated. IL-31 messenger RNA (mRNA) was elevated in hepatocytes from patients with PSC and NASH compared to HVs. In a humanized liver murine model, obeticholic acid increased IL-31 mRNA expression in human hepatocytes and serum levels of human IL-31.

Conclusions: IL-31 levels correlate with pruritus in patients with cholestatic disease and NASH, with FXR agonist therapy resulting in higher serum levels in the latter group. IL-31 appears to derive in part from increased hepatocyte expression. These findings have therapeutic implications for patients with liver disease and pruritus.

Journal Club-2022.06.10

The role of Na v 1.7 and methylglyoxal-mediated activation of TRPA1 in itch and hypoalgesia in a murine model of type 1 diabetes

Ruo-Xiao Cheng, Yu Feng, Di Liu, Zhi-Hong Wang, Jiang-Tao Zhang, Li-Hua Chen, Cun-Jin Su, Bing Wang, Ya Huang, Ru-Rong Ji, Ji Hu, Tong Liu

Abstract

Methylglyoxal (MGO), an endogenous reactive carbonyl compound, plays a key role in the pathogenesis of diabetic neuropathy. The aim of this study is to investigate the role of MGO in diabetic itch and hypoalgesia, two common symptoms associated with diabetic neuropathy. 

Methods: Scratching behavior, mechanical itch (alloknesis), and thermal hypoalgesia were quantified after intradermal (i.d.) injection of MGO in naïve mice or in diabetic mice induced by intraperitoneal (i.p.) injection of streptozotocin (STZ). Behavioral testing, patch-clamp recording, transgenic mice, and gene expression analysis were used to investigate the mechanisms underlying diabetic itch and hypoalgesia in mice. 

Results: I.d. injection of MGO evoked dose-dependent scratching in normal mice. Addition of MGO directly activated transient receptor potential ankyrin 1 (TRPA1) to induce inward currents and calcium influx in dorsal root ganglia (DRG) neurons or in TRPA1-expressing HEK293 cells. Mechanical itch, but not spontaneous itch was developed in STZ-induced diabetic mice. Genetic ablation of Trpa1 (Trpa1-/- ), pharmacological blockade of TRPA1 and Nav1.7, antioxidants, and mitogen-activated protein kinase kinase enzyme (MEK) inhibitor U0126 abrogated itch induced by MGO or in STZ-induced diabetic mice. Thermal hypoalgesia was induced by intrathecal (i.t.) injection of MGO or in STZ-induced diabetic mice, which was abolished by MGO scavengers, intrathecal injection of TRPA1 blockers, and in Trpa1-/- mice. 

Conclusion: This study revealed that Nav1.7 and MGO-mediated activation of TRPA1 play key roles in itch and hypoalgesia in a murine model of type 1 diabetes. Thereby, we provide a novel potential therapeutic strategy for the treatment of itch and hypoalgesia induced by diabetic neuropathy.

Keywords: Diabetes; Hypoalgesia; Itch; Methylglyoxal; TRPA1.

Journal Club-2022.05.20

Neuronal pentraxin 2 is required for facilitating excitatory synaptic inputs onto spinal neurons involved in pruriceptive transmission in a model of chronic itch

Kensho KanehisaKeisuke KogaSho MaejimaYuto ShiraishiKonatsu AsaiMiho Shiratori-HayashiMei-Fang XiaoHirotaka SakamotoPaul F. Worley & Makoto Tsuda

Abstract

An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.

Presenter: Lee Ki Baek

Journal Club-2022.05.13

Molecular and neural basis of pleasant touch sensation

Benlong Liu, Lina Qiao, Kun Liu1, Juan Liu, Tyler J. Piccinni-Ash, Zhou-Feng Chen

DOI: 10.1126/science.abn2479

Abstract

Pleasant touch provides emotional and psychological support that helps mitigate social isolation and stress. However, the underlying mechanisms remain poorly understood. Using a pleasant touch-conditioned place preference (PT-CPP) test, we show that genetic ablation of spinal excitatory interneurons expressing prokineticin receptor 2 (PROKR2), or its ligand PROK2 in sensory neurons, abolishes PT-CPP without impairing pain and itch behaviors in mice. Mutant mice display profound impairments in stress response and prosocial behaviors. Moreover, PROKR2 neurons respond most vigorously to gentle stroking and encode reward value. Collectively, we identify PROK2 as a long-sought neuropeptide that encodes and transmits pleasant touch to spinal PROKR2 neurons. These findings may have important implications for elucidating mechanisms by which pleasant touch deprivation contributes to social avoidance behavior and mental disorders.

Presenter: Hyein Kim

Journal club-2022.04.15.

Lysophosphatidic acid activates nociceptors and causes pain or itch depending on the application mode in human skin

Miriam M Düll Martina Stengel Vivien Ries Marion Strupf Peter W Reeh Andreas E Kremer Barbara Namer 

Abstract

Lysophosphatidic acid (LPA) is involved in the pathophysiology of cholestatic pruritus and neuropathic pain. Slowly conducting peripheral afferent C-nerve fibers are crucial in the sensations of itch and pain. In animal studies, specialized neurons (“pruriceptors”) have been described, expressing specific receptors, eg, from the Mas-related G-protein-coupled receptor family. Human nerve fibers involved in pain signaling (“nociceptors”) can elicit itch if activated by focalized stimuli such as cowhage spicules. In this study, we scrutinized the effects of LPA in humans by 2 different application modes on the level of psychophysics and single nerve fiber recordings (microneurography). In healthy human subjects, intracutaneous LPA microinjections elicited burning pain, whereas LPA application through inactivated cowhage spicules evoked a moderate itch sensation. Lysophosphatidic acid microinjections induced heat hyperalgesia and hypersensitivity to higher electrical stimulus frequencies. Pharmacological blockade of transient receptor potential channel A1 or transient receptor potential channel vanilloid 1 reduced heat hyperalgesia, but not acute chemical pain. Microneurography revealed an application mode-dependent differential activation of mechanosensitive (CM) and mechanoinsensitive C (CMi) fibers. Lysophosphatidic acid microinjections activated a greater proportion of CMi fibers and more strongly than CM fibers; spicule application of LPA activated CM and CMi fibers to a similar extent but excited CM fibers more and CMi fibers less intensely than microinjections. In conclusion, we show for the first time in humans that LPA can cause pain as well as itch dependent on the mode of application and activates afferent human C fibers. Itch may arise from focal activation of few nerve fibers with distinct spatial contrast to unexcited surrounding afferents and a specific combination of activated fiber subclasses might contribute.

Keywords: Lysophosphatidic acid, C- fibers, Microneurography, Psychophysics, TRPV1, TRPA1, Itch, Neuropathic pain, Cholestatic pruritus

2022.03.25

A novel sphingosylphosphorylcholine and sphingosine-1-phosphate receptor 1 antagonist, KRO-105714, for alleviating atopic dermatitis

Sae-Bom Yoon # 1Chang Hoon Lee # 1Hyun Young Kim 1Daeyoung Jeong 1Moon Kook Jeon 1Sun-A Cho 2Kwangmi Kim 3Taeho Lee 4Jung Yoon Yang 1Young-Dae Gong 5Heeyeong Cho 1 6

PMID: 32514255, DOI: 10.1186/s12950-020-00244-6

Abstract

Background: Atopic dermatitis (eczema) is a type of inflammation of the skin, which presents with itchy, red, swollen, and cracked skin. The high global incidence of atopic dermatitis makes it one of the major skin diseases threatening public health. Sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) act as pro-inflammatory mediators, as an angiogenesis factor and a mitogen in skin fibroblasts, respectively, both of which are important biological responses to atopic dermatitis. The SPC level is known to be elevated in atopic dermatitis, resulting from abnormal expression of sphingomyelin (SM) deacylase, accompanied by a deficiency in ceramide. Also, S1P and its receptor, sphingosine-1-phosphate receptor 1 (S1P1) are important targets in treating atopic dermatitis.

Results: In this study, we found a novel antagonist of SPC and S1P1, KRO-105714, by screening 10,000 compounds. To screen the compounds, we used an SPC-induced cell proliferation assay based on a high-throughput screening (HTS) system and a human S1P1 protein-based [35S]-GTPγS binding assay. In addition, we confirmed the inhibitory effects of KRO-105714 on atopic dermatitis through related cell-based assays, including a tube formation assay, a cell migration assay, and an ELISA assay on inflammatory cytokines. Finally, we confirmed that KRO-105714 alleviates atopic dermatitis symptoms in a series of mouse models.

Conclusions: Taken together, our data suggest that SPC and S1P1 antagonist KRO-105714 has the potential to alleviate atopic dermatitis.

Keywords: Antagonist; Anti-inflammatory; Atopic dermatitis; High-throughput screening; Sphingosine-1-phosphate receptor 1; Sphingosylphosphorylcholine.

Presenter: Song Da-Eun

2022.03.18 Journal Club

J Invest Dermatol. 2022 Mar;142(3 Pt A):594-602. doi: 10.1016/j.jid.2021.07.178.Epub 2021 Sep 1.

Specific β-Defensins Stimulate Pruritus through Activation of Sensory Neurons

Pang-Yen Tseng 1Mark A Hoon 2

Abstract

Pruritus is a common symptom of dermatological disorders and has a major negative impact on QOL. Previously, it was suggested that human β-defensin peptides elicit itch through the activation of mast cells. In this study, we investigated in more detail the mechanisms by which β-defensins induce itch by defining the receptors activated by these peptides in humans and mice, by establishing their action in vivo, and by examining their expression in inflammatory dermal diseases. We found that elevated expression of DEFB103 is highly correlated with skin lesions in psoriasis and atopic dermatitis. We showed that the peptide encoded by this gene and related genes activate Mas-related G protein-coupled receptors with different potencies that are related to their charge density. Furthermore, we establish that although these peptides can activate mast cells, they also activate sensory neurons, with the former cells being dispensable for itch reactions in mice. Together, our studies highlight that specific β-defensins are likely endogenous pruritogens that can directly stimulate sensory neurons.

Presenter: Lee Gi-Baek

2022.03.04

Exploring neuronal mechanisms involved in the scratching behavior of a mouse model of allergic contact dermatitis by transcriptomics

Boyu LiuRuixiang ChenJie WangYuanyuan LiChengyu YinYan TaiHuimin NieDanyi ZengJunfan FangJunying DuYi LiangXiaomei ShaoJianqiao Fang Boyi Liu 

Abstract

Background: Allergic contact dermatitis (ACD) is a common skin condition characterized by contact hypersensitivity to allergens, accompanied with skin inflammation and a mixed itch and pain sensation. The itch and pain dramatically affects patients’ quality of life. However, still little is known about the mechanisms triggering pain and itch sensations in ACD.

Methods: We established a mouse model of ACD by sensitization and repetitive challenge with the hapten oxazolone. Skin pathological analysis, transcriptome RNA sequencing (RNA-seq), qPCR, Ca2+ imaging, immunostaining, and behavioral assay were used for identifying gene expression changes in dorsal root ganglion innervating the inflamed skin of ACD model mice and for further functional validations.

Results: The model mice developed typical ACD symptoms, including skin dryness, erythema, excoriation, edema, epidermal hyperplasia, inflammatory cell infiltration, and scratching behavior, accompanied with development of eczematous lesions. Transcriptome RNA-seq revealed a number of differentially expressed genes (DEGs), including 1436-DEG mRNAs and 374-DEG-long noncoding RNAs (lncRNAs). We identified a number of DEGs specifically related to sensory neuron signal transduction, pain, itch, and neuroinflammation. Comparison of our dataset with another published dataset of atopic dermatitis mouse model identified a core set of genes in peripheral sensory neurons that are exclusively affected by local skin inflammation. We further found that the expression of the pain and itch receptor MrgprD was functionally upregulated in dorsal root ganglia (DRG) neurons innervating the inflamed skin of ACD model mice. MrgprD activation induced by its agonist β-alanine resulted in exaggerated scratching responses in ACD model mice compared with naïve mice.

Conclusions: We identified the molecular changes and cellular pathways in peripheral sensory ganglia during ACD that might participate in neurogenic inflammation, pain, and itch. We further revealed that the pain and itch receptor MrgprD is functionally upregulated in DRG neurons, which might contribute to peripheral pain and itch sensitization during ACD. Thus, targeting MrgprD may be an effective method for alleviating itch and pain in ACD.

Keywords: Allergic contact dermatitis; Itch; Pain; RNA-seq; Sensory neurons.

The online version contains supplementary material available at https://cmbl.biomedcentral.com/articles/10.1186/s11658-022-00316-w

Scroll to Top