Journal Club 2024.04.11

IL-31–generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin

Takashi Hashimoto, MD, PhD,a Hiroo Yokozeki, MD, PhD,b Hajime Karasuyama, MD, PhD,c and Takahiro Satoh, MD, PhDa Tokorozawa and Tokyo, Japan

From a the Department of Dermatology, National Defense Medical College, Tokorozawa, and b the Department of Dermatology, Graduate School of Medical and Dental Sciences, and c the Inflammation, Infection and Immunity Laboratory, Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo. This study was partially supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (C) (grant numbers 17K16328, 19K08743, and 22K08395 to T.H. and 19K08805 and 22K08444 to T.S.). Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest. Received for publication July 18, 2022; revised October 22, 2022; accepted for publication November 11, 2022. Available online November 19, 2022. Corresponding author: Takashi Hashimoto, MD, PhD, Department of Dermatology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan. E-mail: hashderm@ndmc.ac.jp. The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections 0091-6749/$36.00 2022 American Academy of Allergy, Asthma & Immunology https://doi.org/10.1016/j.jaci.2022.11.009

Background: IL-31 is a type 2 cytokine involved in the itch sensation in atopic dermatitis (AD). The cellular origins of IL-31 are generally considered to be TH2 cells. Macrophages have also been implicated as cellular sources of IL-31. Objective: We sought to determine the expression of IL-31 by macrophages and to elucidate the productive mechanisms and contributions to itch in AD skin lesions. Methods: Expression of IL-31 by macrophages, expressions of thymic stromal lymphopoietin (TSLP) and periostin, and presence of infiltrating basophils in human AD lesions were examined through immunofluorescent staining, and correlations were assessed. Furthermore, mechanisms of inducing IL-31– expressing macrophages were analyzed in an MC903-induced murine model for AD in vivo and in mouse peritoneal macrophages ex vivo.

Results: A significant population of IL-311 cells in human AD lesions was that of CD681 cells expressing CD163, an M2 macrophage marker. The number of IL-311/CD681 cells correlated with epidermal TSLP, dermal periostin, and the number of dermal-infiltrating basophils. In the MC903-induced murine AD model, significant scratching behaviors with enhanced expressions of TSLP and periostin were observed, accompanied by massive infiltration of basophils and IL-311/ MOMA-21/Arg-11 cells. Blockade of IL-31 signaling with anti– IL-31RA antibody or direct depletion of macrophages by clodronate resulted in attenuation of scratching behaviors. Toeffectively reduce lesional IL-311 macrophages and itch, basophil depletion was essential in combination with TSLP- and periostin-signal blocking. Murine peritoneal macrophages produced IL-31 when stimulated with TSLP, periostin, and basophils.

Conclusions: A network comprising IL-31–expressing macrophages, TSLP, periostin, and basophils plays a significant role in AD itch. (J Allergy Clin Immunol 2023;151:737-46.)

Key words: Atopic dermatitis, basophil, IL-31, itch, macrophage, periostin, thymic stromal lymphopoietin

Leave a Comment

Scroll to Top