Journal club 2012-11-09

TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity

Stuart M. Brierley1,2,3, Joel Castro1,2, Andrea M. Harrington1,2, Patrick A. Hughes1,2, Amanda J. Page1,2,3, Grigori Y. Rychkov3 and L. Ashley Blackshaw1,2,3

1Nerve-Gut Research Laboratory, Department of Gastroenterology and Hepatology, Hanson Institute, Royal Adelaide Hospital, Adelaide, South Australia, Australia 5000
Disciplines of 2Medicine and 3Physiology, Faculty of Heath Sciences, University of Adelaide, Adelaide, South Australia, Australia 5000

 tjp0589-3575

Abstract
The mechanosensory role of TRPA1 and its contribution to mechanical hypersensitivity in sensory neurons remains enigmatic. We elucidated this role by recording mechanically activated currents in conjunction with TRPA1 over- and under-expression and selective pharmacology. First, we established that TRPA1 transcript, protein and functional expression are more abundant in smaller-diameter neurons than larger-diameter neurons, allowing comparison of two different neuronal populations. Utilising whole cell patch clamping, we applied calibrated displacements to neurites of dorsal root ganglion (DRG) neurons in short-term culture and recorded mechanically activated currents termed intermediately (IAMCs), rapidly (RAMCs) or slowly adapting (SAMCs). Trpa1 deletion (–/–) significantly reduced maximum IAMC amplitude by 43% in small-diameter neurons compared with wild-type (+/+) neurons. All other mechanically activated currents in small- and large-diameter Trpa1−/− neurons were unaltered. Seventy-three per cent of Trpa1+/+ small-diameter neurons responding to the TRPA1 agonist allyl-isothiocyanate (AITC) displayed IAMCs to neurite displacement, which were significantly enhanced after AITC addition. The TRPA1 antagonist HC-030031 significantly decreased Trpa1+/+ IAMC amplitudes, but only in AITC responsive neurons. Using a trans- fection system we also showed TRPA1 over-expression in Trpa1+/+ small-diameter neurons increases IAMC amplitude, an effect reversed by HC-030031. Furthermore, TRPA1 introduction into Trpa1−/− small-diameter neurons restored IAMC amplitudes to Trpa1+/+ levels, which was subsequently reversed by HC-030031. In summary our data demonstrate TRPA1 makes a contribution to normal mechanosensation in a specific subset of DRG neurons. Furthermore, they also provide new evidence illustrating mechanisms by which sensitisation or over-expression of TRPA1 enhances nociceptor mechanosensitivity. Overall, these findings suggest TRPA1 has the capacity to tune neuronal mechanosensitivity depending on its degree of activation or expression.

Journal club 2012-10-26

TRPV1 is a novel target for omega-3 polyunsaturated fatty acids

tjp0578-0397

Jose ́ A. Matta, Rosa L. Miyares and Gerard P. Ahern

From the Department of Pharmacology, Georgetown University, Washington, DC 20007, USA

Omega-3 (n-3) fatty acids are essential for proper neuronal function, and they possess prominent analgesic properties, yet their underlying signalling mechanisms are unclear. Here we show that n-3 fatty acids interact directly with TRPV1, an ion channel expressed in nociceptive neurones and brain. These fatty acids activate TRPV1 in a phosphorylation-dependent manner, enhance responses to extracellular protons, and displace binding of the ultrapotent TRPV1 ligand [3 H]resiniferatoxin. In contrast to their agonistic properties, n-3 fatty acids competitively inhibit the responses of vanilloid agonists. These actions occur in mammalian cells in the physiological concentration range of 1–10 μM. Significantly, docosahexaenoic acid exhibits the greatest efficacy as an agonist, whereas eicosapentaenoic acid and linolenic acid are markedly more effective inhibitors. Similarly, eicosapentaenoic acid but not docosahexaenoic acid profoundly reduces capsaicin-evoked pain-related behaviour in mice. These effects are independent of alterations in membrane elasticity because the micelle-forming detergent Triton X-100 only minimally affects TRPV1 properties. Thus, n-3 fatty acids differentially regulate TRPV1 and this form of signalling may contribute to their biological effects. Further, these results suggest that dietary supplementation with selective n-3 fatty acids would be most beneficial for the treatment of pain.

(Resubmitted 28 September 2006; accepted 8 October 2006; first published online 12 October 2006)
Corresponding author G. P. Ahern: Department of Pharmacology, Georgetown University, MedDent SW401, 3900 Reservoir Rd, Washington, DC 20007, USA. Email: gpa3@georgetown.edu

 

Journal club 2012-09-27

pone.0038439

TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals

Arianne L. Motter, Gerard P. Ahern*
Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, United States of America

Abstract

Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1), a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs) in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human) TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions.

page1image27656

Citation: Motter AL, Ahern GP (2012) TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals. PLoS ONE 7(6): e38439. doi:10.1371/journal.pone.0038439

Editor: Stuart E. Dryer, University of Houston, United States of America

Received November 3, 2011; Accepted May 7, 2012; Published June 19, 2012

Copyright: ß 2012 Motter, Ahern. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from National Institute of Neurological Disorders and Stroke and the American Recovery and Reinvestment Act 2009. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Journal club 2012-09-13

ncb2529

ncb2529-s1

Direct inhibition of the cold-activated TRPM8 ion channel by Gα(q).

Source

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.

Abstract

Activation of the TRPM8 ion channel in sensory nerve endings produces a sensation of pleasant coolness. Here we show that inflammatory mediators such as bradykinin and histamine inhibit TRPM8 in intact sensory nerves, but do not do so through conventional signalling pathways. The G-protein subunit Gα(q) instead binds to TRPM8 and when activated by a Gq-coupled receptor directly inhibits ion channel activity. Deletion of Gα(q) largely abolished inhibition of TRPM8, and inhibition was rescued by a Gα(q) chimaera whose ability to activate downstream signalling pathways was completely ablated. Activated Gα(q) protein, but not Gβγ, potently inhibits TRPM8 in excised patches. We conclude that Gα(q) pre-forms a complex with TRPM8 and inhibits activation of TRPM8, following activation of G-protein-coupled receptors, by a direct action. This signalling mechanism may underlie the abnormal cold sensation caused by inflammation.

PMID:

 22750945

[PubMed – in process] PMCID:

PMC3428855 [Available on 2013/2/1]

Journal club 2012-07-26

Emery.SOM
Filename : emery-som.pdf (907 KB)
Caption :
Science-2011-Emery-1462-6
Filename : science-2011-emery-1462-6.pdf (426 KB)
Caption :

Science. 2011 Sep 9;333(6048):1462-6.

HCN2 ion channels play a central role in inflammatory and neuropathic pain.

Source

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.

Abstract

The rate of action potential firing in nociceptors is a major determinant of the intensity of pain. Possible modulators of action potential firing include the HCN ion channels, which generate an inward current, I(h), after hyperpolarization of the membrane. We found that genetic deletion of HCN2removed the cyclic adenosine monophosphate (cAMP)-sensitive component of I(h) and abolished action potential firing caused by an elevation of cAMP in nociceptors. Mice in which HCN2 was specifically deleted in nociceptors expressing Na(V)1.8 had normal pain thresholds, but inflammation did not cause hyperalgesia to heat stimuli. After a nerve lesion, these mice showed no neuropathic pain in response to thermal or mechanical stimuli. Neuropathic pain is therefore initiated by HCN2-driven action potential firing in Na(V)1.8-expressing nociceptors.

PMID:

 21903816

[PubMed – indexed for MEDLINE]

 

Scroll to Top