Journal club 2012-12-07

TRPA1 underlies a sensing mechanism for O2

nchembio.640 , nchembio.640-S1

nobuaki takahashi1–3, tomoyuki Kuwaki4, shigeki Kiyonaka1,2,5, tomohiro numata1,2, daisuke Kozai1,2, Yusuke Mizuno1,2, shinichiro Yamamoto1,2, shinji naito6, ellen Knevels7,8, peter Carmeliet7,8, toru Oga9, shuji Kaneko10, seiji suga1, toshiki nokami1, Jun-ichi Yoshida1 & Yasuo Mori1,2,5*

Oxygen (O2) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O2, it is critical to elucidate the molecular mechanisms responsible for O2 sens- ing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with differ- ent redox potentials reveals the capability of TRPA1 to sense O2. O2 sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O2-dependent inhibition on TRPA1 activity in normoxia, direct O2 action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O2-sensing mechanism mediated by TRPA1.

nchembio.640
Filename : nchembio-640.pdf (3 MB)
Caption :
nchembio.640-S1
Filename : nchembio-640-s1-2.pdf (12 MB)
Caption :
nchembio.640-S1
Filename : nchembio-640-s1.pdf (12 MB)
Caption :

Leave a Comment

Scroll to Top