Journal Club 2016.10.28

TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation.

Abstract

Transient receptor potential vanilloid receptor 1 (TRPV1) is a non-selective cation channel that is stimulated by heat (>43 °C), mechanical/osmotic stimuli, and low pH. The importance of TRPV1 in inflammatory responses has been demonstrated, whereas its participation in brains remains unclear. In the present study, the intracerebroventricular (icv) administration of the TRPV1 agonist resiniferatoxin (RTX) induced the activation of signal transducer and activator of transcription 3 (STAT3) in circumventricular organs (CVOs) and thermoregulation-associated brain regions with a similar patttern to the peripheral and icv administration of lipopolysaccharide (LPS). With the peripheral and icv LPS stimuli, STAT3 activation was significantly lower in Trpv1(-/-) mice than in Trpv1(+/+) mice. The icv administration of RTX induced transient hypothermia, whereas that of the TRPV1 antagonist capsazepine enhanced the magnitude and period of LPS-induced hyperthermia. These results indicate that TRPV1 is important for activating proinflammatory STAT3 signaling and thermoregulation-associated brain pathways in the brain.

TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation

supply_TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation

Journal Club 2016.10.28 Read More »

Journal Club 2016.9.23

The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4.

Abstract

Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1(+) neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1(+) neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. Significance statement: In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1-coexpressing HEK293 cells, and in both rat and mouse spinal cord slices. Moreover, this is the first study to show that this interaction plays an important role in the generation of behavioral hypersensitivity in paclitaxel-related neuropathy. The key translational implications are that TLR4 and TRPV1 antagonists may be useful in the prevention and treatment of chemotherapy-induced peripheral neuropathy in humans.

The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4

Journal Club 2016.9.23 Read More »

Journal Club 2016. 7. 8

TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation.

Liu XJ1,2, Liu T2,3, Chen G2, Wang B1, Yu XL1, Yin C1, Ji RR2,4.

Abstract

Increasing evidence suggests that neuro-immune and neuro-glial interactions are critically involved in chronic pain sensitization. It is well studied how immune/glial mediators sensitize pain, but how sensory neurons control neuroinflammation remains unclear. We employed Myd88 conditional knockout (CKO) mice, in which Myd88 was deleted in sodium channel subunit Nav1.8-expressing primary sensory neurons, to examine the unique role of neuronal MyD88 in regulating acute and chronic pain, and possible underlying mechanisms. We found that baseline pain and the formalin induced acute inflammatory pain were intact in CKO mice. However, the late phase inflammatory pain following complete Freund’s adjuvant injection and the late phase neuropathic pain following chronic constriction injury (CCI), were reduced in CKO mice. CCI induced up-regulation of MyD88 and chemokine C-C motif ligand 2 expression in DRG neurons and macrophage infiltration into DRGs, and microglia activation in spinal dorsal horns in wild-type mice, but all these changes were compromised in CKO mice. Finally, the pain hypersensitivity induced by intraplantar IL-1β was reduced in CKO mice. Our findings suggest that MyD88 in primary sensory neurons plays an active role in regulating IL-1β signaling and neuroinflammation in the peripheral and the central nervous systems, and contributes to the maintenance of persistent pain.

TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation

Journal Club 2016. 7. 8 Read More »

Journal Club 2016. 4. 29

Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis.

AIM:

To investigate the activity and expression of EAAT2 glutamate transporter in both in vitro and in vivo models of cholestasis.

METHODS:

This study was conducted on human hepatoblastoma HepG2 cell cultures, the liver of bile duct ligated rats and human specimens from cholestatic patients. EAAT2 glutamate transporter activity and expression were analyzed using a substrate uptake assay, immunofluorescence, reverse transcription-polymerase chain reaction, and immunohistochemistry, respectively.

RESULTS:

In HepG2 cells, cholestasis was mimicked by treating cells with the protein kinase C activator, phorbol 12-myristate 13-acetate. Under such conditions, EAAT2 transporter activity was decreased both at the level of substrate affinity and maximal transport velocity. The decreased uptake was correlated with intracellular translocation of EAAT2 molecules as demonstrated using immunofluorescence. In the liver of bile duct ligated rats, an increase in EAAT2 transporter protein expression in hepatocytes was demonstrated using immunohistochemistry. The same findings were observed in human liver specimens of cholestasis in which high levels of γ-glutamyl transpeptidase were documented in patients with biliary atresia and progressive familial intrahepatic cholestasis type 3.

CONCLUSION:

This study demonstrates the alteration in glutamate handling by hepatocytes in liver cholestasis and suggests a potential cross-talk between glutamatergic and bile systems.

Regulation of hepatic EAAT-2 glutamate transporter expression in human liver cholestasis

Journal Club 2016. 4. 29 Read More »

Journal Club 2016. 4. 15

Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2: Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2.

Abstract

Myeloid differentiation factor 2 (MD-2) is an extracellular protein, associated with the ectodomain of TLR4, that plays a critical role in the recognition of bacterial LPS. Despite high overall structural and functional similarity, human (h) and murine (m) MD-2 exhibit several species-related differences. hMD-2 is capable of binding LPS in the absence of TLR4, whereas mMD-2 supports LPS responsiveness only when mMD-2 and mTLR4 are coexpressed in the same cell. Previously, charged residues at the edge of the LPS binding pocket have been attributed to this difference. In this study, site-directed mutagenesis was used to explore the hydrophobic residues within the MD-2 binding pocket as the source of functional differences between hMD-2 and mMD-2. Whereas decreased hydrophobicity of residues 61 and 63 in the hMD-2 binding pocket retained the characteristics of wild-type hMD-2, a relatively minor change of valine to alanine at position 135 completely abolished the binding of LPS to the hMD-2 mutant. The mutant, however, retained the LPS binding in complex with TLR4 and also cell activation, resulting in a murine-like phenotype. These results were supported by the molecular dynamics simulation. We propose that the residue at position 135 of MD-2 governs the dynamics of the binding pocket and its ability to accommodate lipid A, which is allosterically affected by bound TLR4.

Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2; Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2

Journal Club 2016. 4. 15 Read More »

Journal club 2016. 2. 26

PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

1Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, 1985717443, Tehran, Iran.

Abstract

TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation.

PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2

Journal club 2016. 2. 26 Read More »

Journal Club 2016.1.29.

The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

Abstract

The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system.

The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons

Journal Club 2016.1.29. Read More »

Journal Club 2015.12.11

Involvement of TRPV4 in serotonin-evoked scratching

Tasuku Akiyama1,2, Margaret Ivanov1, Masaki Nagamine1, Auva Davoodi1, Mirela Iodi Carstens1, Akihiko Ikoma3, Ferda Cevikbas3, Cordula Kempkes3, Joerg Buddenkotte3,4, Martin Steinhoff3,4 and E Carstens1

Abstract

Several thermo-sensitive TRP channels (TRPV1, -3; TRPA1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an important role in acute itch in mice. Four different pruritogens including serotonin (5-hydroxytrytamine, 5-HT), histamine, SLIGRL (PAR2/MrgprC11 agonist) and chloroquine (MrgprA3 agonist) were intradermally injected and itch-related scratching behavior was assessed. TRPV4 knockout (TRPV4KO) mice exhibited significantly fewer 5-HT-evoked scratching bouts compared to wild-type (WT) mice. Notably, no differences between TRPV4KO and WT mice were observed in the number of scratch bouts elicited by SLIGRL and histamine. Pretreatment with a TRPV4 antagonist significantly attenuated 5-HT-evoked scratching in vivo. Using calcium imaging in cultured primary murine dorsal root ganglion (DRG) neurons, the response of neurons after 5-HT application, but not other pruritogens, was significantly lower in TRPV4KO compared to WT mice. A TRPV4 antagonist significantly suppressed 5-HT-evoked responses in DRG cells from WT mice. Approximately 90% of 5-HT-sensitive DRG neurons were immunoreactive for an antibody to TRPV4, as assessed by calcium imaging. These results indicate that serotonin-induced itch is linked to TRPV4.

Involvement of TRPV4 in serotonin-evoked scratching

Journal Club 2015.12.11 Read More »

Journal Club 2015.11.26

Gate control of mechanical itch by a subpopulation of spinal cord interneurons

Light mechanical stimulation of hairy skin can induce a form of itch known as mechanical itch. This itch sensation is normally suppressed by inputs from mechanoreceptors; however, in many forms of chronic itch, including alloknesis, this gating mechanism is lost. Here we demonstrate that a population of spinal inhibitory interneurons that are defined by the expression of neuropeptide Y::Cre (NPY::Cre) act to gate mechanical itch. Mice in which dorsal NPY::Cre-derived neurons are selectively ablated or silenced develop mechanical itch without an increase in sensitivity to chemical itch or pain. This chronic itch state is histamine-independent and is transmitted independently of neurons that express the gastrin-releasing peptide receptor. Thus, our studies reveal a dedicated spinal cord inhibitory pathway that gates the transmission of mechanical itch.

550.full supple dat

Journal Club 2015.11.26 Read More »

Journal Club 2015.08.21

Role of PAR2 in regulating oxaliplatin-induced neuropathic pain via TRPA1

Abstract

Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Blocking proteinase-activated receptor 2 (PAR2) significantly attenuated mechanical pain and cold sensitivity observed in control rats and OXL rats (P < 0.05 vs. vehicle control). The attenuating effect of PAR2 on mechanical pain and cold sensitivity were significantly smaller in OXL-rats than in control rats. The role played by PAR2 downstream signaling pathways [namely, transient receptor potential ankyrin 1 (TRPA1)] in regulating OXL evoked-neuropathic pain was also examined. The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P <0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXLinduced neuropathic pain via TRPA1 pathways.

Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord

Abstract

Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, neuropathic pain is one of the main limiting complications of OXL. The purpose of this study was to examine the underlying mechanisms by which neuropathic pain is induced by OXL in a rat model. Our results demonstrated that blocking spinal proteinase-activated receptor 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) attenuated pain responses evoked by mechanical stimulation and decreased the releases of substance P and CGRP in the superficial dorsal horn of the spinal cord. The attenuating effect on mechanical pain was significantly smaller in OXL-rats than that in control rats. Blocking PAR2 also attenuated a heightened cold sensitivity evoked by OXL; whereas blocking TRPV1 had little effects on OXL-evoked hypersensitive cold response. Our data also showed that OXL increased the protein expressions of PAR2 and TRPV1 in the superficial dorsal horn. In addition, blocking PAR2 decreased TRPV1 expression in OXL-rats. Overall, our data suggest that upregulated expression of PAR2 in the superficial dorsal horn contributes to mechanical hyperalgesia and cold hypersensitivity; whereas amplified TRPV1 plays a role in regulating mechanical hyperalgesia, but not cold hypersensitivity after administration of OXL. We further suggest that TRPV1 is likely one of the signaling pathways for PAR2 to play a role in regulating OXL-induced neuropathic pain.

Journal Club 2015.08.21 Read More »

Scroll to Top