Journal Club 2015.10.30

J Neurosci. 2011 May 18;31(20):7563-7. doi: 10.1523/JNEUROSCI.1192-11.2011.

BAM8-22 peptide produces itch and nociceptive sensations in humans independent of histamine release.

Author information

presentation
Filename : presentation.pdf (864 KB)
Caption :

Abstract

Chronic itch accompanying many dermatological, neurological, and systemic diseases is unresponsive to antihistamines. Our knowledge of endogenous chemicals that evoke histamine-independent itch and their molecular targets is very limited. Recently it was demonstrated in behavioral and cellular experiments that bovine adrenal medulla 8-22 peptide (BAM8-22), a proteolytically cleaved product of proenkephalin A, is a potent activator of Mas-related G-protein-coupled receptors (Mrgprs), MrgprC11 and hMrgprX1, and induces scratching in mice in an Mrgpr-dependent manner. To study the sensory qualities that BAM8-22 evokes in humans, we tested the volar forearm of 15 healthy volunteers with heat-inactivated cowhage spicules previously soaked in the peptide. BAM8-22 produced itch in each subject, usually accompanied by sensations of pricking/stinging and burning. The sensations were occasionally accompanied by one or more mechanically evoked dysesthesias, namely alloknesis, hyperknesis, and/or hyperalgesia, but no wheal or neurogenic flare in the skin surrounding the application site. The inactive truncated peptide BAM8-18 produced weak or no sensations. Pretreatment of the tested skin with an antihistamine cream (doxepin) inhibited histamine-induced sensations, dysesthesias, and skin reactions but not the sensations and dysesthesias evoked by BAM8-22. We show that BAM8-22 produces itch and nociceptive sensations in humans in a histamine-independent manner. Thus, BAM8-22 may be an endogenous itch mediator that activates, in humans, MrgprX1, a novel target for potential anti-itch treatments.

Journal Club 2015.10.30 Read More »

Journal Club 2015.10.23

Lysophosphatidic Acid Is a Potential Mediator of Cholestatic Pruritus

1-s2.0-S0016508510007377-main

ANDREAS E. KREMER,* JOB J. W. W. MARTENS,* WIM KULIK,‡ FRANZISKA RUËFF,§ EDITH M. M. KUIPER,? HENK R. VAN BUUREN,? KAREL J. VAN ERPECUM,¶ JURATE KONDRACKIENE,# JESUS PRIETO,** CHRISTIAN RUST,‡‡ VICTORIA L. GEENES,§§ CATHERINE WILLIAMSON,§§ WOUTER H. MOOLENAAR,?? ULRICH BEUERS,* and RONALD P. J. OUDE ELFERINK* *Tytgat Institute for Liver and Intestinal Research and ‡Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; §Departments of Dermatology and Allergology, University of Munich, Munich, Germany; ‡‡Internal Medicine II – Grosshadern, University of Munich, Munich, Germany; ?Department of Gastroenterology & Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; ¶Department of Gastroenterology and Hepatology, University Medical Center, Utrecht, The Netherlands; #Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania; **Department of Medicine and Liver Unit, Clinica Universitaria, Medical School and Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; §§Maternal and Fetal Disease Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, England; and ?Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands

BACKGROUND & AIMS: Pruritus is a common and disabling symptom in cholestatic disorders. However, its causes remain unknown. We hypothesized that potential pruritogens accumulate in the circulation of cholestatic patients and activate sensory neurons.
METHODS: Cytosolic free calcium ([Ca2?]i) was measured in neuronal cell lines by ratiometric fluorometry upon exposure to serum samples from pruritic patients with intrahepatic cholestasis of pregnancy (ICP), primary biliary cirrhosis (PBC), other cholestatic disorders, and pregnant, healthy, and nonpruritic disease controls. Putative [Ca2?]i-induc- ing factors in pruritic serum were explored by analytical techniques, including quantification by high-performance liquid chromatography/mass spectroscopy. In mice, scratch activity after intradermal pruritogen injection was quantified using a magnetic device.
RESULTS: Transient increases in neuronal [Ca2?]i induced by pruritic PBC and ICP sera were higher than corresponding controls. Lysophosphatidic acid (LPA) could be identified as a major [Ca2?]i agonist in pruritic sera, and LPA concentrations were increased in cholestatic patients with pruritus. LPA injected intradermally into mice induced scratch responses. Autotaxin, the serum enzyme converting lysophosphatidylcholine into LPA, was markedly increased in patients with ICP versus pregnant controls (P ?<.0001) and cholestatic patients with versus without pruritus (P <? .0001). Autotaxin activity correlated with intensity of pruritus (P ?<.0001), which was not the case for serum bile salts, histamine, tryptase, substance P, or ?-opioids. In patients with PBC who underwent temporary nasobiliary drainage, both itch intensity and autotaxin activity markedly decreased during drainage and returned to preexistent levels after drain removal.
CONCLUSIONS: We suggest that LPA and autotaxin play a critical role in cholestatic pruritus and may serve as potential targets for future thera- peutic interventions.
Keywords: Autotaxin; Bile Salts; Cholestasis; Itch.

Journal Club 2015.10.23 Read More »

Journal Club 2015.10.16

Cell Rep. 2015 Oct 13;13(2):387-98. doi: 10.1016/j.celrep.2015.09.002. Epub 2015 Oct 1.

ASIC3 Mediates Itch Sensation in Response to Coincident Stimulation by Acid and Nonproton Ligand.

Abstract

The regulation and mechanisms underlying itch sensation are complex. Here, we report a role for acid-sensing ion channel 3 (ASIC3) in mediating itch evoked by certain pruritogens during tissue acidosis. Co-administration of acid with Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SL-NH2) increased scratching behavior in wild-type, but not ASIC3-null, mice, implicating the channel in coincident detection of acidosis and pruritogens. Mechanistically, SL-NH2 slowed desensitization of proton-evoked currents by targeting the previously identified nonproton ligand-sensing domain located in the extracellular region of ASIC3 channels in primary sensory neurons. Ablation of the ASIC3 gene reduced dry-skin-induced scratching behavior and pathological changes under conditions with concomitant inflammation. Taken together, our data suggest that ASIC3 mediates itch sensation via coincident detection of acidosis and nonproton ligands that act at the nonproton ligand-sensing domain of the channel.

Journal Club 2015.10.16 Read More »

Journal Club 2015.10.02.

Oral supplementation with fish oil reduces dryness and pruritus in the acetone-induced dry skin rat model

1-s2.0-S0923181115300207-main

Raquel C.S. Barcelosa,b,c,d,f, Cristina de Mello-Sampayob,c,f,*, Caren T.D. Antoniazzia, Hecson J. Segata, Henrique Silvad, Juliana C. Veite, Jaqueline Piccoloe,
Tatiana Emanuellia,e, Marilise E. Bürgera, Beatriz Silva- Limab,c, Luis M. Rodriguesb,d
a Universidade Federal de Santa Maria (UFSM), Programa de Pós-Graduação em Farmacologia, Santa Maria, RS, Brazil
b Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
c Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
d CBIOS, Research Center for Bioscience and Health Technologies, Universidade Lusófona, Lisboa, Portugal
e Departamento de Tecnologia dos Alimentos, Programa de Pós-Graduação em Ciência Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
f Both authors have contributed equally to this work.

Background: Pruritus and discomfort are often present in patients with xerosis and atopic dermatitis. Several studies suggest an important role of diet in skin pathophysiology.
Objective: This study evaluated the effect of dietary fatty acids in the skin physiology via an itch-related animal model with and without supplementation with fish oil (FO), a source of polyunsaturated fatty acids (PUFA), especially omega 3 (n-3).
Methods: Male Wistar rats were divided into two groups—non-supplemented (control) and supplemented with FO (3g/kg/day) by gavage for 90 days. Every 30 days, scratching and skin parameters (transepidermal water loss (TEWL), hydration, and local blood flow) were evaluated before and after dorsal skin exposure to acetone to induce the itch-related dry skin. At the end of the study, animals were sacrificed, and skin samples collected for fatty acids composition analysis by GC–FID. Results: FO supplementation reduced the TEWL and increased the skin hydration, with significant changes from day 60 on, while skin microcirculation registered no changes. It also alleviated the acetone induced skin barrier alteration, revealed by a faster resolution of TEWL and hydration, and elimination of itch-related scratching induced by dry skin. These changes were associated with the shift in the skin fatty acids incorporation pattern (richer in n-3 with n-6/n-3 < 5) resulting from the FO supplementation. Conclusion: Skin barrier dynamics seem to be influenced by FO n-3 PUFA, with suppressive effects on the scratching behaviour induced by dry skin. Hence, long-term supplementation with n-3 PUFA rich nutrients might reinforce and restore cutaneous integrity and function.
ã 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Journal Club 2015.10.02. Read More »

Journal Club 2015.09.18.

Histamine Released from Epidermal Keratinocytes Plays a Role in a-MelanocyteeStimulating Hormone-Induced Itching in Mice

Histamine Released from Epidermal Keratinocytes Plays a Role in α-Melanocyte–Stimulating Hormone-Induced Itching in Mice

Kyoko Shimizu,* Tsugunobu Andoh,y Yoko Yoshihisa,* and Tadamichi Shimizu*
From the Departments of Dermatology* and Applied Pharmacology,y Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
Accepted for publication July 14, 2015.
Address correspondence to Tadamichi Shimizu, Depart- ment of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Japan. E-mail: shimizut@med.u- toyama.ac.jp.

Sunburn, wound repair, and chronic renal failure with hemodialysis are usually accompanied by both pigmentation and itching. Proopiomelanocortin-derived a-melanocyteestimulating hormone (a-MSH) is produced in response to external stimuli, such as UV irradiation, and is involved in cutaneous pigmen- tation. However, it is unclear whether a-MSH is also involved in the itching. We therefore investigated whether a-MSH elicited itch-related responses in mice. We found that an intradermal injection of a-MSH induced hind-paw scratching, an itch-related response, in mice. The a-MSHeinduced scratching was inhibited by the m-opioid receptor antagonist naltrexone and the H1 histamine receptor antagonist terfenadine. In mast cell-deficient mice, a-MSH also elicited scratching, which was inhibited by terfe- nadine. The immunoreactivity for L-histidine decarboxylase, a key enzyme required for the production of histamine, histamine, and the melanocortin 1 and 5 receptors were shown in not only mast cells but also keratinocytes in murine skin. In addition to the expression of L-histidine decarboxylase and melanocortin 1 and 5 receptors, the mouse keratinocyte cell lines (Pam212) also showed immunoreactivity for L-his- tidine decarboxylase, histamine, and melanocortin 1 and 5 receptors. The application of a-MSH induced the release of histamine from Pam212 cells. These findings indicate that a-MSH may play an important role in the itching associated with pigmented cutaneous lesions and that the histamine released from keratinocytes is involved in this a-MSHeinduced itching. (Am J Pathol 2015, -: 1e8; http://dx.doi.org/ 10.1016/j.ajpath.2015.07.015)

Journal Club 2015.09.18. Read More »

Journal Club 2015.09.11.

Antipruritic mechanisms of topical E6005, a phosphodiesterase
4 inhibitor: Inhibition of responses to proteinase-activated receptor 2 stimulation mediated by increase in intracellular cyclic AMP
Tsugunobu Andoh, Yasushi Kuraishi *
Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan

1-s2.0-S0923181114002497-main

ABSTRACT
Background: Phosphodiesterase 4 (PDE4), which catalyses the conversion of cyclic adenosine 30,50- monophosphate (cAMP) to 50-AMP, plays a critical role in the pathogenesis of inflammatory disorders. Pruritus is the main symptom of dermatitides, such as atopic dermatitis, and is very difficult to control. Recent studies have shown that the activation of proteinase-activated receptor 2 (PAR2) is involved in pruritus in dermatoses in humans and rodents.
Objective: To investigate the inhibitory effect of E6005, a topically effective PDE4 inhibitor, on PAR2-associated itching in mice.
Methods: Mice were given an intradermal injection of SLIGRL-NH2 (100 nmol/site), a PAR2 agonist peptide, into the rostral part of the back. E6005 and 8-bromo-cAMP were applied topically and injected intradermally, respectively, to the same site. Scratching bouts were observed as an itch-related behavior, and firing activity of the cutaneous nerve was electrophysiologically recorded. Keratinocytes were isolated from the skin of neonatal mice and cultured for in vitro experiments. The concentrations of cAMP and leukotriene B4 (LTB4) were measured by enzyme immunoassay. The distribution of PDE4 subtypes in the skin was investigated by immunostaining.
Results: Topical E6005 and intradermal 8-bromo-cAMP significantly inhibited SLIGRL-NH2-induced scratching and cutaneous nerve firing. Topical E6005 increased cutaneous cAMP content. Topical E6005 and intradermal 8-bromo-cAMP inhibited cutaneous LTB4 production induced by SLIGRL-NH2, which has been shown to elicit LTB4-mediated scratching. E6005 and 8-bromo-cAMP inhibited SLIGRL-NH2- induced LTB4 production in the cultured murine keratinocytes also. PDE4 subtypes were mainly expressed in keratinocytes and mast cells in the skin.
Conclusions: The results suggest that topical E6005 treatment inhibits PAR2-associated itching. Inhibition of LTB4 production mediated by an increase in cAMP may be partly involved in the antipruritic action of E6005.
ß 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

Journal Club 2015.09.11. Read More »

Journal Club 2015.08.28.

Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

ncomms8864

Vemuri B. Reddy1,*, Shuohao Sun2,*, Ehsan Azimi1, Sarina B. Elmariah1, Xinzhong Dong2 & Ethan A. Lerner1
Sensory neurons expressing Mas-related G-protein-coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S-mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with G-protein-coupled receptors (GPCRs) redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch.

Journal Club 2015.08.28. Read More »

Journal Club 2015.08.21

Role of PAR2 in regulating oxaliplatin-induced neuropathic pain via TRPA1

Abstract

Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, one of the main limiting complications of OXL is neuropathic pain. In this study, the underlying mechanisms responsible for OXL evoked-neuropathic pain were examined. Using a rat model, the results demonstrated that intraperitoneal (i.p.) injection of OXL significantly increased mechanical pain and cold sensitivity as compared with control animals (P < 0.05 vs. control rats). Blocking proteinase-activated receptor 2 (PAR2) significantly attenuated mechanical pain and cold sensitivity observed in control rats and OXL rats (P < 0.05 vs. vehicle control). The attenuating effect of PAR2 on mechanical pain and cold sensitivity were significantly smaller in OXL-rats than in control rats. The role played by PAR2 downstream signaling pathways [namely, transient receptor potential ankyrin 1 (TRPA1)] in regulating OXL evoked-neuropathic pain was also examined. The data shows that TRPA1 expression was upregulated in the lumbar dorsal root ganglion (DRG) of OXL rats and blocking TRPA1 inhibited mechanical pain and heightened cold sensitivity (P <0.05 vs. control rats). Blocking PAR2 also significantly decreased TRPA1expression in the DRG. Findings in this study show that OXL intervention amplifies mechanical hyperalgesia and cold hypersensitivity and PAR2 plays an important role in regulating OXLinduced neuropathic pain via TRPA1 pathways.

Blocking PAR2 attenuates oxaliplatin-induced neuropathic pain via TRPV1 and releases of substance P and CGRP in superficial dorsal horn of spinal cord

Abstract

Oxaliplatin (OXL) is a third-generation chemotherapeutic agent commonly used to treat metastatic digestive tumors; however, neuropathic pain is one of the main limiting complications of OXL. The purpose of this study was to examine the underlying mechanisms by which neuropathic pain is induced by OXL in a rat model. Our results demonstrated that blocking spinal proteinase-activated receptor 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) attenuated pain responses evoked by mechanical stimulation and decreased the releases of substance P and CGRP in the superficial dorsal horn of the spinal cord. The attenuating effect on mechanical pain was significantly smaller in OXL-rats than that in control rats. Blocking PAR2 also attenuated a heightened cold sensitivity evoked by OXL; whereas blocking TRPV1 had little effects on OXL-evoked hypersensitive cold response. Our data also showed that OXL increased the protein expressions of PAR2 and TRPV1 in the superficial dorsal horn. In addition, blocking PAR2 decreased TRPV1 expression in OXL-rats. Overall, our data suggest that upregulated expression of PAR2 in the superficial dorsal horn contributes to mechanical hyperalgesia and cold hypersensitivity; whereas amplified TRPV1 plays a role in regulating mechanical hyperalgesia, but not cold hypersensitivity after administration of OXL. We further suggest that TRPV1 is likely one of the signaling pathways for PAR2 to play a role in regulating OXL-induced neuropathic pain.

Journal Club 2015.08.21 Read More »

Jouanal Club 2015.08.07

20150807_성민

 

Potentials of the circulating pruritogenic mediator lysophosphatidic acid in development of allergic skin inflammation in mice: role of blood cell-associated lysophospholipase D activity of autotaxin.

Abstract

Itching and infiltration of immune cells are important hallmarks of atopic dermatitis (AD). Although various studies have focused on peripheral mediator-mediated mechanisms, systemic mediator-mediated mechanisms are also important in the pathogenesis and development of AD. Herein, we found that intradermal injection of lysophosphatidic acid (LPA), a bioactive phospholipid, induces scratching responses by Institute of Cancer Research mice through LPA1 receptor- and opioid μ receptor-mediating mechanisms, indicating its potential as a pruritogen. The circulating level of LPA in Naruto Research Institute Otsuka Atrichia mice, a systemic AD model, with severe scratching was found to be higher than that of control BALB/c mice, probably because of the increased lysophospholipase D activity of autotaxin (ATX) in the blood (mainly membrane associated) rather than in plasma (soluble). Heparan sulfate proteoglycan was shown to be involved in the association of ATX with blood cells. The sequestration of ATX protein on the blood cells by heparan sulfate proteoglycan may accelerate the transport of LPA to the local apical surface of vascular endothelium with LPA receptors, promoting the hyperpermeability of venules and the pathological uptake of immune cells, aggravating lesion progression and itching in Naruto Research Institute Otsuka Atrichia mice.

Jouanal Club 2015.08.07 Read More »

Journal club 2015.07.24.

Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons
Yukari Hatakeyama1, Kenji Takahashi1, Makoto Tominaga2, Hideo Kimura3 and Toshio Ohta1*

s12990-015-0023-4

Abstract
Background: Hydrogen sulfide (H2S) is oxidized to polysulfide. Recent reports show that this sulfur compound modulates various biological functions. We have reported that H2S is involved in inflammatory pain in mice. On the other hand, little is known about the functional role of polysulfide in sensory neurons. Here we show that polysulfide selectively stimulates nociceptive TRPA1 and evokes acute pain, using TRPA1-gene deficient mice (TRPA1(−/−)), a heterologous expression system and a TRPA1-expressing cell line.
Results: In wild-type mouse sensory neurons, polysulfide elevated the intracellular Ca concentration ([Ca2+]i) in a dose-dependent manner. The half maximal effective concentration (EC50) of polysulfide was less than one-tenth that of H2S. The [Ca2+]i responses to polysulfide were observed in neurons responsive to TRPA1 agonist and were inhibited by blockers of TRPA1 but not of TRPV1. Polysulfide failed to evoke [Ca2+]i increases in neurons from TRPA1(−/−) mice. In RIN-14B cells, constitutively expressing rat TRPA1, polysulfide evoked [Ca2+]i increases with the same EC50 value as in sensory neurons. Heterologously expressed mouse TRPA1 was activated by polysulfide and that was suppressed by dithiothreitol. Analyses of the TRPA1 mutant channel revealed that cysteine residues located in the internal domain were related to the sensitivity to polysulfide. Intraplantar injection of polysulfide into the mouse hind paw induced acute pain and edema which were significantly less than in TRPA1(−/−) mice.
Conclusions: The present data suggest that polysulfide functions as pronociceptive substance through the activation of TRPA1 in sensory neurons. Since the potency of polysulfide is higher than parental H2S and this sulfur compound is generated under pathophysiological conditions, it is suggested that polysulfide acts as endogenous ligand for TRPA1. Therefore, TRPA1 may be a promising therapeutic target for endogenous sulfur compound-related algesic action.
Keywords: Transient Receptor Potential Channels (TRP Channels), Calcium imaging, Dorsal root ganglia, Heterologous expression

Journal club 2015.07.24. Read More »

Scroll to Top