Journal club 2013-07-26

Human Mas-Related G Protein-Coupled Receptors-X1 Induce Chemokine Receptor 2 Expression in Rat Dorsal Root Ganglia Neurons and Release of Chemokine Ligand 2 from the Human LAD-2 Mast Cell Line

pone.0058756

Hans Ju ̈rgen Solinski1, Franziska Petermann2, Kathrin Rothe1, Ingrid Boekhoff1, Thomas Gudermann1, Andreas Breit1*

1Walther-Straub-Institut fu ̈r Pharmakologie und Toxikologie, Ludwig-Maximilians-Universita ̈t Mu ̈nchen, Munich, Germany, 2Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany

Abstract

Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up- regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain.

Citation: Solinski HJ, Petermann F, Rothe K, Boekhoff I, Gudermann T, et al. (2013) Human Mas-Related G Protein-Coupled Receptors-X1 Induce Chemokine Receptor 2 Expression in Rat Dorsal Root Ganglia Neurons and Release of Chemokine Ligand 2 from the Human LAD-2 Mast Cell Line. PLoS ONE 8(3): e58756. doi:10.1371/journal.pone.0058756

Editor: Roland Seifert, Medical School of Hannover, United States of America Received January 18, 2013; Accepted February 6, 2013; Published March 7, 2013

Copyright: ß 2013 Solinski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the ‘‘Deutsche Forschungsgemeinschaft’’ [grant BR 3346/3–1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.*

E-mail: andreas.breit@lrz.uni-muenchen.de

Journal club 2013-07-19

Life Sci. 2006 Dec 14;80(2):89-97. Epub 2006 Aug 23.

Characterization of the transient receptor potential channels mediating lysophosphatidic acid-stimulated calcium mobilization in B lymphoblasts.

Source

Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8.

Abstract

Altered 1-oleoyl-lysophosphatidic acid (LPA, 100 microM)-stimulated calcium responses occur in B-lymphoblast cell lines from bipolar disorder patients, but the mechanism(s) involved is uncertain. Lysophosphatidic acid shares a structurally similar fatty acid side chain with the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of subtypes 3, 6 and 7 of the canonical transient receptor potential (TRPC) cation channel subfamily. Accordingly, the objective of this study was to determine whether the LPA-stimulated calcium response in B-lymphoblasts is mediated, in part, through this TRPC channel subfamily. Divalent cation selectivity in response to thapsigargin, LPA and OAG were used to distinguish TRPC-like character of the responses to these agents in BLCLs. The sensitivity to gadolinium, an inhibitor of capacitative calcium channels, was used to determine the store-operated nature of the responses. The TRPC isoforms that are present in BLCLs as identified by immunoblotting and/or PCR include TRPC1, 3 and 5. Minimal barium influx in calcium-free buffer was observed following thapsigargin stimulation. However, LPA stimulated barium influx of a magnitude similar to that induced by OAG. Thapsigargin-provoked calcium influx was completely inhibited by gadolinium (10 microM), whereas LPA and OAG-stimulated responses were partially inhibited and potentiated, respectively. The results suggest that 100 microM LPA stimulates calcium entry through channels with characteristics similar to TRPC3, as TRPC6 and 7 are absent in B-lymphoblasts.

PMID:

 

16979191

 

[PubMed – indexed for MEDLINE]

Journal club 2013-07-12

Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site

Andrés Nieto-Posadas1, Giovanni Picazo-Juárez1, Itzel Llorente1, Andrés Jara-Oseguera2,
Sara Morales-Lázaro1, Diana Escalante-Alcalde1*, León D Islas2* & Tamara Rosenbaum1*

Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are
increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in
primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces
acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates
TRPV1 through a unique mechanism that is independent of G protein–coupled receptors, contrary to what has been widely
shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct
molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA
binding directly to an ion channel to acutely regulate its function.

nchembio.712

Scroll to Top