journal 2014-01-02

Pharmacological Blockade of TRPM8 Ion Channels Alters Cold and Cold Pain Responses in Mice

.journal.pone.0025894

Abstract

TRPM8 (Transient Receptor Potential Melastatin-8) is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy)-3-methoxybe​nzyl(2-aminoethyl)carbamate)which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo

journal 2013-11-15

all2854

The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice.

Source

Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. yuusuke_oosawa@pharm.kissei.co.jp

Abstract

BACKGROUND:

Although histamine H1 receptor (H1R) antagonists are commonly used to treat atopic dermatitis, the treatment is not always effective. The histamine H4 receptor (H4R) was recently described as important to the pruritus in dermatitis. Here, we investigated whether the combination of a H1R antagonist plus a H4R antagonist attenuates chronic dermatitis in NC/Nga mice.

METHODS:

Chronic dermatitis was developed by repeated challenges with picryl chloride on the dorsal back and ear lobes. The therapeutic effects of the H1R antagonist olopatadine and H4R antagonist JNJ7777120 on scratching and the severity of dermatitis were evaluated. In addition, the mechanisms responsible for the anti-allergic effects of H1R and/or H4R antagonism were examined using bone marrow-derived mast cells (BMMC) and keratinocytes.

RESULTS:

JNJ7777120 attenuated scratching behavior after a single administration and improved dermatitis, as assessed with clinical scores, pathology, and cytokine levels in skin lesions when administered repeatedly. These effects were augmented by combined treatment with olopatadine, having a similar therapeutic efficacy to prednisolone. JNJ7777120 inhibited dose-dependently the production of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 from antigen-stimulated BMMC. In addition, olopatadine reversed the histamine-induced reduction of semaphorin 3A mRNA in keratinocytes.

CONCLUSION:

Combined treatment with H1R and H4R antagonists may have a significant therapeutic effect on chronic dermatitis through the synergistic inhibition of pruritus and skin inflammation.

© 2012 John Wiley & Sons A/S.

Journal club 2013-11-01

The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch

Abstract

Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology.

Citation: Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, et al. (2013) The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch. PLoS ONE 8(1): e55001. doi:10.1371/journal.pone.0055001

Editor: Michael N. Nitabach, Yale School of Medicine, United States of America

Received: October 10, 2012; Accepted: December 21, 2012; Published: January 30, 2013

Copyright: © 2013 Gerhold et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors are supported by a U.S. National Institutes of Health Innovator Award DOD007123A, the Pew Scholars Program, and the McKnight Scholars Fund (to DMB) and NSF grant 0844743 (to KCC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
journal.pone.0055001

Journal club 2013-09-13

9554.full

Transient Receptor Potential Canonical 3 (TRPC3) Is Required for IgG Immune Complex-Induced Excitation of the Rat Dorsal Root Ganglion Neurons

Chronic pain may accompany immune-related disorders with an elevated level of serum IgG immune complex (IgG-IC), but the underlying                        mechanisms are obscure. We previously demonstrated that IgG-IC directly excited a subpopulation of dorsal root ganglion (DRG)                        neurons through the neuronal Fc-gamma receptor I (FcγRI). This might be a mechanism linking IgG-IC to pain and hyperalgesia.                        The purpose of this study was to investigate the signaling pathways and transduction channels activated downstream of IgG-IC                        and FcγRI. In whole-cell recordings, IgG-IC induced a nonselective cation current (IIC) in the rat DRG neurons, carried by Ca2+ and Na+. The IIC was potentiated or attenuated by, respectively, lowering or increasing the intracellular Ca2+ buffering capacity, suggesting that this current was regulated by intracellular calcium. Single-cell RT-PCR revealed that                        transient receptor potential canonical 3 (TRPC3) mRNA was always coexpressed with FcγRI mRNA in the same DRG neuron. Moreover,                        ruthenium red (a general TRP channel blocker), BTP2 (a general TRPC channel inhibitor), and pyrazole-3 (a selective TRPC3                        blocker) each potently inhibited the IIC. Specific knockdown of TRPC3 using small interfering RNA attenuated the IgG-IC-induced Ca2+ response and the IIC. Additionally, the IIC was blocked by the tyrosine kinase Syk inhibitor OXSI-2, the phospholipase C (PLC) inhibitor neomycin, and either the inositol                        triphosphate (IP3) receptor antagonist 2-aminoethyldiphenylborinate or heparin. These results indicated that the activation of neuronal FcγRI                        triggers TRPC channels through the Syk–PLC–IP3 pathway and that TRPC3 is a key molecular target for the excitatory effect of IgG-IC on DRG neurons.

  • Received December 20, 2011.
  • Revision received May 20, 2012.
  • Accepted May 23, 2012.

Journal club 2013-08-12

1-s2.0-S0143416010001260-main

Cell Calcium. 2010 Oct;48(4):202-8. doi: 10.1016/j.ceca.2010.09.001. Epub 2010 Oct 12.

TRPM8 mediates cold and menthol allergies associated with mast cell activation.

Source

Sensory Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.

Abstract

Exposure to low temperatures often causes allergic responses or urticaria. Similarly, menthol, a common food additive is also known to cause urticaria, asthma, and rhinitis. However, despite the obvious clinical implications, the molecular mechanisms responsible for inducing allergic responses to low temperatures and menthol have not been determined. Because a non-selective cation channel, transient receptor potential subtype M8 (TRPM8) is activated by cold and menthol, we hypothesized that this channel mediates cold- and menthol-induced histamine release in mast cells. Here, we report that TRPM8 is expressed in the basophilic leukemia mast cell line, RBL-2H3, and that exposure to menthol or low temperatures induced Ca(2+) influx in RBL-2H3 cells, which was reversed by a TRPM8 blocker. Furthermore, menthol, a TRPM8 agonist, induced the dose-dependent release of histamine from RBL-2H3 cells. When TRPM8 transcripts were reduced by siRNA (small interfering RNA), menthol- and cold-induced Ca(2+) influx and histamine release were significantly reduced. In addition, subcutaneous injection of menthol evoked scratching, a typical histamine-induced response which was reversed by a TRPM8 blocker. Thus, our findings indicate that TRPM8 mediates the menthol- and cold-induced allergic responses of mast cells, and suggest that TRPM8 antagonists be viewed as potential treatments for cold- and menthol-induced allergies.

Copyright © 2010 Elsevier Ltd. All rights reserved.

PMID:

 

20934218

 

[PubMed – indexed for MEDLINE]

Journal club 2013-06-14

jid2009155a

Leukotriene B(4) mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin.

Source

Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-1094, Japan.

Abstract

In atopic dermatitis, the concentration in the skin of sphingosylphosphorylcholine (SPC), which is produced from sphingomyelin by sphingomyelin deacylase, is increased. In the present study, we investigated the itch-eliciting activity of SPC and related substances and the mechanisms of SPC action in mice. An intradermal injection of SPC, but not sphingomyelin and sphingosine, induced scratching, an itch-associated response, which was not suppressed by a deficiency in mast cells or the H(1) histamine receptor antagonist terfenadine. The action of SPC was inhibited by the mu-opioid receptor antagonist naltrexone. SPC action also was inhibited by the 5-lipoxygenase inhibitor zileuton and the leukotriene B(4) antagonist ONO-4057, but not by the cyclooxygenase inhibitor indomethacin. Moreover, SPC action was inhibited by the antiallergic agent azelastine, which suppresses the action and production of leukotriene B(4). Administration of SPC to the skin and to primary cultures of keratinocytes increased leukotriene B(4) production. SPC increased intracellular Ca(2+) ion concentration in primary cultures of dorsal root ganglion neurons and keratinocytes. These results suggest that SPC induces itching through a direct action on primary afferents and leukotriene B(4) production of keratinocytes. Sphingomyelin deacylase and SPC receptors may be previously unreported targets for antipruritic drugs.

Journal club 2013-05-24

1-s2.0-S0306452212009220-main

Cross-sensitization of histamine-independent itch in mouse primary sensory neurons

  • University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States

Accepted 8 September 2012
Available online 19 September 2012

 


Abstract

Overexpression of pruritogens and their precursors may contribute to the sensitization of histamine-dependent and –independent itch-signaling pathways in chronic itch. We presently investigated self- and cross-sensitization of scratching behavior elicited by various pruritogens, and their effects on primary sensory neurons. The MrgprC11 agonist BAM8-22 exhibited self- and reciprocal cross-sensitization of scratching evoked by the protease-activated receptor-2 (PAR-2) agonist SLIGRL. The MrgprA3 agonist chloroquine unidirectionally cross-sensitized BAM8-22-evoked scratching. Histamine unidirectionally cross-sensitized scratching evoked by chloroquine and BAM8-22. SLIGRL unidirectionally cross-sensitized scratching evoked by chloroquine. Dorsal root ganglion (DRG) cells responded to various combinations of pruritogens and algogens. Neither chloroquine, BAM8-22 nor histamine had any effect on responses of DRG cell responses to subsequently applied pruritogens, implying that their behavioral self- and cross-sensitization effects are mediated indirectly. SLIGRL unilaterally cross-sensitized responses of DRG cells to chloroquine and BAM8-22, consistent with the behavioral data. These results indicate that unidirectional cross-sensitization of histamine-independent itch-signaling pathways might occur at a peripheral site through PAR-2. PAR-2 expressed in pruriceptive nerve endings is a potential target to reduce sensitization associated with chronic itch.

Journal club 2013-04-12

13525-1.fullTRPA1 mediates formalin-induced pain

*Hydra Biosciences, Inc., 790 Memorial Drive, Cambridge, MA 02139; and
Departments of Physiology and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
To whom correspondence may be addressed. E-mail: julius@cmp.ucsf.edu or ; Email: mmoran@hydrabiosciences.com

Contributed by David Julius, July 5, 2007

.

Author contributions: C.R.M. and J.M.-B. contributed equally to this work; C.R.M., J.M.-B., D.M.B., J.S., N.J.H., D.J., M.M.M., and C.M.F. designed research; C.R.M., J.M.-B., D.M.B., J.S., K.L.D., and M.Z. performed research; C.R.M., J.M.-B., D.M.B., J.S., M.Z., J.A.C., D.J., M.M.M., and C.M.F. analyzed data; and C.R.M., D.M.B., J.S., J.A.C., D.J., M.M.M., and C.M.F. wrote the paper.

Received June 18, 2007
Copyright © 2007 by The National Academy of Sciences of the USA

Freely available online through the PNAS open access option.

This article has been cited by other articles in PMC.
 

Abstract

The formalin model is widely used for evaluating the effects of analgesic compounds in laboratory animals. Injection of formalin into the hind paw induces a biphasic pain response; the first phase is thought to result from direct activation of primary afferent sensory neurons, whereas the second phase has been proposed to reflect the combined effects of afferent input and central sensitization in the dorsal horn. Here we show that formalin excites sensory neurons by directly activating TRPA1, a cation channel that plays an important role in inflammatory pain. Formalin induced robust calcium influx in cells expressing cloned or native TRPA1 channels, and these responses were attenuated by a previously undescribed TRPA1-selective antagonist. Moreover, sensory neurons from TRPA1-deficient mice lacked formalin sensitivity. At the behavioral level, pharmacologic blockade or genetic ablation of TRPA1 produced marked attenuation of the characteristic flinching, licking, and lifting responses resulting from intraplantar injection of formalin. Our results show that TRPA1 is the principal site of formalin’s pain-producing action in vivo, and that activation of this excitatory channel underlies the physiological and behavioral responses associated with this model of pain hypersensitivity.

Keywords: analgesia, inflammation, trp channel, formaldehyde
Scroll to Top