2017-04-28

Long-term anti-itch effect of botulinum neurotoxin A is associated with downregulation of TRPV1 and TRPA1 in the dorsal root ganglia in mice.

Abstract

Itch is a common symptom in patients with skin and systemic diseases, but the effective treatment is limited. Here, we evaluated the anti-itch effects of the botulinum toxin type A (BoNT/A) using acute and chronic dry skin itch mouse models, which were induced by compound 48/80, chloroquine, and a mixture of acetone-diethylether-water treatment, respectively. Pretreatment of intradermal BoNT/A exerted long-term inhibitory effects on compound 48/80-induced and chloroquine-induced acute itch on days 1, 3, 7, and 14, but not on day 21, in mice. Furthermore, a single injection of BoNT/A reduced the expression of the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), and the transient receptor potential cation channel, subfamily A, member 1 (TRPA1) at both transcriptional and translational levels in the dorsal root ganglia (DRG) in mice. Pretreatment of BoNT/A also attenuated chronic itch induced by acetone-diethylether-water treatment and abolished the upregulation of TRPA1 in the DRG. Thus, it was suggested that downregulation of the expression of TRPA1 and TRPV1 in the DRG may contribute toward the long-term anti-itch effects of a single injection of BoNT/A in mice and BoNT/A treatment may serve as an alternative strategy for anti-itch therapy.

Long-term anti-itch effect of botulinum neurotoxin A is associated with downregulatio of TRPV1 and TRPA1 in the dorsal root ganglia in mice.

Journal Club 2017. 04. 21

IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization.

Abstract

Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4(+) T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4(+) T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD.

IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization

Journal Club 2017.04.14

TNF-a/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms

art10.1007s12264-017-0124-3

Xiuhua Miao1 • Ya Huang2 • Teng-Teng Liu2 • Ran Guo2 • Bing Wang2 • Xue-Long Wang3 • Li-Hua Chen4 • Yan Zhou2 • Ru-Rong Ji5,6 • Tong Liu1,2
Received: 11 November 2016 / Accepted: 9 February 2017
Ó Shanghai Institutes for Biological Sciences, CAS and Springer Science+Business Media Singapore 2017

Abstract Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-a) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-a antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-a was not sufficient to evoke scratching, but potentiated itch induced by com- pound 48/80, but not CQ. In addition, compound 48/80 induced TNF-a mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etaner- cept and in TNFR1/R2 DKO mice. Dry skin induced TNF- a expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-a/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be benefi- cial for chronic itch treatment.
Keywords Itch Tumor necrosis factor Tumor necrosis factor receptor Spinal cord Central sensitization

Journal Club 2017.04.07

Lysophosphatidic acid-induced itch is mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1.

KEY POINTS:  Lysophosphatidic acid (LPA) is an itch mediator, but not a pain mediator by a cheek injection model. Dorsal root ganglion neurons directly respond to LPA depending on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). LPA-induced itch-related behaviours are decreased in TRPA1-knockout (KO), TRPV1KO or TRPA1TRPV1 double KO mice. TRPA1 and TRPV1 channels are activated by intracellular LPA, but not by extracellular LPA following LPA5 receptor activation with an activity of Ca2+ -independent phospholipase A2 and phospholipase D. Intracellular LPA interaction sites of TRPA1 are KK672-673 and KR977-978 (K: lysine, R: arginine).

ABSTRACT:  Intractable and continuous itch sensations often accompany diseases such as atopic dermatitis, neurogenic lesions, uremia and cholestasis. Lysophosphatidic acid (LPA) is an itch mediator found in cholestatic itch patients and it induces acute itch and pain in experimental rodent models. However, the molecular mechanism by which LPA activates peripheral sensory neurons remains unknown. In this study, we used a cheek injection method in mice to reveal that LPA induced itch-related behaviours but not pain-related behaviours. The LPA-induced itch behaviour and cellular effects were dependent on transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1), which are important for itch signal transduction. We also found that, among the six LPA receptors, the LPA5 receptor had the greatest involvement in itching. Furthermore, we demonstrated that phospholipase D (PLD) plays a critical role downstream of LPA5 and that LPA directly and intracellularly activates TRPA1 and TRPV1. These results suggest a unique mechanism by which cytoplasmic LPA produced de novo could activate TRPA1 and TRPV1. We conclude that LPA-induced itch is mediated by LPA5 , PLD, TRPA1 and TRPV1 signalling, and thus targeting TRPA1, TRPV1 or PLD could be effective for cholestatic itch interventions.

Lysophosphatidic acid-induced itch is mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1.

Scroll to Top