Journal club 2014-06-13

Neuron. 2014 May 7;82(3):573-86. doi: 10.1016/j.neuron.2014.02.046. Epub 2014 Apr 10.

Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord.

Kardon AP1, Polgár E2, Hachisuka J1, Snyder LM1, Cameron D2, Savage S2, Cai X1, Karnup S1, Fan CR3, Hemenway GM3, Bernard CS3, Schwartz ES4,Nagase H5, Schwarzer C6, Watanabe M7, Furuta T8, Kaneko T8, Koerber HR1, Todd AJ9, Ross SE10.

Abstract

Menthol and other counterstimuli relieve itch, resulting in an antipruritic state that persists for minutes to hours. However, the neural basis for this effect is unclear, and the underlying neuromodulatory mechanisms are unknown. Previous studies revealed that Bhlhb5(-/-) mice, which lack a specific population of spinal inhibitory interneurons (B5-I neurons), develop pathological itch. Here we characterize B5-I neurons and show that they belong to a neurochemically distinct subset. We provide cause-and-effect evidence that B5-I neurons inhibit itch and show that dynorphin, which is released from B5-I neurons, is a key neuromodulator of pruritus. Finally, we show that B5-I neurons are innervated by menthol-, capsaicin-, and mustard oil-responsive sensory neurons and are required for the inhibition of itch by menthol. These findings provide a cellular basis for the inhibition of itch by chemical counterstimuli and suggest that kappa opioids may be a broadly effective therapy for pathological itch.

mmc2
Filename : mmc2.pdf (5 MB)
Caption :

mmc2
Filename : mmc2.pdf (5 MB)
Caption :

Leave a Comment

Scroll to Top