journal club 13-10-2014

B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway

Xian-Yu Liu12Li Wan12Fu-Quan Huo12Devin M Barry12Hui Li12Zhong-Qiu Zhao12and Zhou-Feng Chen1234

Abstract

Background

A recent study by Mishra and Hoon identified B-type natriuretic peptide (BNP) as an important peptide for itch transmission and proposed that BNP activates spinal natriuretic peptide receptor-A (NPRA) expressing neurons, which release gastrin releasing peptide (GRP) to activate GRP receptor (GRPR) expressing neurons to relay itch information from the periphery to the brain (Science340:968–971, 2013). A central premise for the validity of this novel pathway is the absence of GRP in the dorsal root ganglion (DRG) neurons. To this end, they showed that Grp mRNA in DRG neurons is either absent or barely detectable and claimed that BNP but not GRP is a major neurotransmitter for itch in pruriceptors. They showed that NPRA immunostaining is perfectly co-localized with Grp-eGFP in the spinal cord, and a few acute pain behaviors in Nppb-/- mice were tested. They claimed that BNP is an itch-selective peptide that acts as the first station of a dedicated neuronal pathway comprising a GRP-GRPR cascade for itch. However, our studies, along with the others, do not support their claims.

Findings

We were unable to reproduce the immunostaining of BNP and NPRA as shown by Mishra and Hoon. By contrast, we were able to detect Grp mRNA in DRGs using in situ hybridization and real time RT-PCR. We show that the expression pattern of Grp mRNA is comparable to that of GRP protein in DRGs. Pharmacological and genetic blockade of GRP-GRPR signaling does not significantly affect intrathecal BNP-induced scratching behavior. We show that BNP inhibits inflammatory pain and morphine analgesia.

Conclusions

Accumulating evidence demonstrates that GRP is a key neurotransmitter in pruriceptors for mediating histamine-independent itch. BNP-NPRA signaling is involved in both itch and pain and does not function upstream of the GRP-GRPR dedicated neuronal pathway. The site of BNP action in itch and pain and its relationship with GRP remain to be clarified.

Keywords:

BNP; NPRA; GRP; GRPR; Itch; Pain; Spinal cord; DRG

B type natriuretic peptide is neither itch specific nor

journal club 2014.9.18

involvement of BLT2 in itch associated response

Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice.

Abstract

BACKGROUND AND PURPOSE:

Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4′-[[pentanoyl (phenyl) amino]methyl]-1,1′-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid).

EXPERIMENTAL APPROACH:

A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used.

KEY RESULTS:

Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose-response curve for compound A showed peaks at around 0.005-0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT(2) receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice.

CONCLUSIONS AND IMPLICATIONS:

Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor antagonists.

1-s2.0-S0306452214004175-main
Filename : 1-s2-0-s0306452214004175-main.pdf (1 MB)
Caption :

Itch elicited by intradermal injection of serotonin, intracisternal injection of morphine, and their synergistic interactions in rats

Neuroscience 274 (2014) 119–127

Abstract

We used the cheek model of itch and pain in rats to determine the dose–response relationships for intradermal injection of serotonin and α methylserotonin on scratching behavior. We also determined the dose-related effects of intracisternally injected morphine on scratching, effects that were greatly reduced by administration of the opiate antagonist naloxone. We then examined the interactions of intradermal injection of serotonin and intracisternal injection of morphine on scratching and found that the two procedures act synergistically to increase itch. These results suggest that morphine applied to the CNS is capable of producing itch and greatly increasing itch originating in the skin (hyperknesis).

Abbreviations

  • α-Me-5HT, α-methylserotonin maleate salt;
  • DRG, dorsal root ganglion

Key words

  • hyperknesis;
  • itch;
  • serotonin;
  • morphine;
  • intracisternal injection

 

Journal club 2014-06-13

Neuron. 2014 May 7;82(3):573-86. doi: 10.1016/j.neuron.2014.02.046. Epub 2014 Apr 10.

Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord.

Kardon AP1, Polgár E2, Hachisuka J1, Snyder LM1, Cameron D2, Savage S2, Cai X1, Karnup S1, Fan CR3, Hemenway GM3, Bernard CS3, Schwartz ES4,Nagase H5, Schwarzer C6, Watanabe M7, Furuta T8, Kaneko T8, Koerber HR1, Todd AJ9, Ross SE10.

Abstract

Menthol and other counterstimuli relieve itch, resulting in an antipruritic state that persists for minutes to hours. However, the neural basis for this effect is unclear, and the underlying neuromodulatory mechanisms are unknown. Previous studies revealed that Bhlhb5(-/-) mice, which lack a specific population of spinal inhibitory interneurons (B5-I neurons), develop pathological itch. Here we characterize B5-I neurons and show that they belong to a neurochemically distinct subset. We provide cause-and-effect evidence that B5-I neurons inhibit itch and show that dynorphin, which is released from B5-I neurons, is a key neuromodulator of pruritus. Finally, we show that B5-I neurons are innervated by menthol-, capsaicin-, and mustard oil-responsive sensory neurons and are required for the inhibition of itch by menthol. These findings provide a cellular basis for the inhibition of itch by chemical counterstimuli and suggest that kappa opioids may be a broadly effective therapy for pathological itch.

mmc2
Filename : mmc2.pdf (5 MB)
Caption :

Journal Club 2014-04-25

Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch

Abstract

Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt−/− mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0020559

Journal Club 2014-04-04

Structure of the TRPV1 ion channel determined by electron cryo-microscopy

Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5–6 (S5–S6) and the intervening pore loop, which is flanked by S1–S4 voltage-sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with a short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

Liao et al_2013_Structure of the TRPV1 ion channel determined by electron cryo-microscopy

Scroll to Top