Journal Club: 2024.07.05

KCNQ1 is an essential mediator of the sex-dependent perception of moderate cold temperatures

Aytug K Kiper 1Sven Wegner 1Aklesso Kadala 2Susanne Rinné 1Sven Schütte 1Zoltán Winter 2Mirjam A R Bertoune 3Filip Touska 2Veronika Matschke 4Eva Wrobel 5Anne-Kathrin Streit 1Florian Lang 6Constanze Schmidt 7Eric Schulze-Bahr 8Martin K-H Schäfer 3Jakob Voelkl 9Guiscard Seebohm 4 8Katharina Zimmermann # 2Niels Decher # 1

Affiliations expand

Abstract

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.

Journal Club: 2024.05.10

Allergy. 2024 Mar 13. doi: 10.1111/all.16086. 

RNA-sequencing of paired tape-strips and skin biopsies in atopic dermatitis reveals key differences

Blaine Fritz 1Anne-Sofie Halling 2Isabel Díaz-Pinés Cort 1Maria Oberländer Christensen 2Amalie Thorsti Møller Rønnstad 2Caroline Meyer Olesen 2Mette Hjorslev Knudgaard 3Claus Zachariae 3 4Steffen Heegaard 4Jacob P Thyssen 2 4Thomas Bjarnsholt 1 5

Abstract

Background: Skin tape-strips and biopsies are widely used methods for investigating the skin in atopic dermatitis (AD). Biopsies are more commonly used but can cause scarring and pain, whereas tape-strips are noninvasive but sample less tissue. The study evaluated the performance of skin tape-strips and biopsies for studying AD.

Methods: Whole-transcriptome RNA-sequencing was performed on paired tape-strips and biopsies collected from lesional and non-lesional skin from AD patients (n = 7) and non-AD controls (n = 5). RNA yield, mapping efficiency, and differentially expressed genes (DEGs) for the two methods (tape-strip/biopsy) and presence of AD (AD/non-AD) were compared.

Results: Tape-strips demonstrated a lower RNA yield (22 vs. 4596 ng) and mapping efficiency to known genes (28% vs. 93%) than biopsies. Gene-expression profiles of paired tape-strips and biopsies demonstrated a medium correlation (R2 = 0.431). Tape-strips and biopsies demonstrated systematic differences in measured expression levels of 6483 genes across both AD and non-AD samples. Tape-strips preferentially detected many itch (CCL3/CCL4/OSM) and immune-response (CXCL8/IL4/IL5/IL22) genes as well as markers of epidermal dendritic cells (CD1a/CD207), while certain cytokines (IL18/IL37), skin-barrier genes (KRT2/FLG2), and dermal fibroblasts markers (COL1A/COL3A) were preferentially detected by biopsies. Tape-strips identified more DEGs between AD and non-AD (3157 DEGs) then biopsies (44 DEGs). Tape-strips also detected higher levels of bacterial mRNA than biopsies.

Conclusions: This study concludes that tape-strips and biopsies each demonstrate respective advantages for measuring gene-expression changes in AD. Thus, the specific skin layers and genes of interest should be considered before selecting either method.

Keywords: RNA sequencing; atopic dermatitis; biopsies; inflammation; tape-strips.

Scroll to Top