journal club 13-10-2014

B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway

Xian-Yu Liu12Li Wan12Fu-Quan Huo12Devin M Barry12Hui Li12Zhong-Qiu Zhao12and Zhou-Feng Chen1234

Abstract

Background

A recent study by Mishra and Hoon identified B-type natriuretic peptide (BNP) as an important peptide for itch transmission and proposed that BNP activates spinal natriuretic peptide receptor-A (NPRA) expressing neurons, which release gastrin releasing peptide (GRP) to activate GRP receptor (GRPR) expressing neurons to relay itch information from the periphery to the brain (Science340:968–971, 2013). A central premise for the validity of this novel pathway is the absence of GRP in the dorsal root ganglion (DRG) neurons. To this end, they showed that Grp mRNA in DRG neurons is either absent or barely detectable and claimed that BNP but not GRP is a major neurotransmitter for itch in pruriceptors. They showed that NPRA immunostaining is perfectly co-localized with Grp-eGFP in the spinal cord, and a few acute pain behaviors in Nppb-/- mice were tested. They claimed that BNP is an itch-selective peptide that acts as the first station of a dedicated neuronal pathway comprising a GRP-GRPR cascade for itch. However, our studies, along with the others, do not support their claims.

Findings

We were unable to reproduce the immunostaining of BNP and NPRA as shown by Mishra and Hoon. By contrast, we were able to detect Grp mRNA in DRGs using in situ hybridization and real time RT-PCR. We show that the expression pattern of Grp mRNA is comparable to that of GRP protein in DRGs. Pharmacological and genetic blockade of GRP-GRPR signaling does not significantly affect intrathecal BNP-induced scratching behavior. We show that BNP inhibits inflammatory pain and morphine analgesia.

Conclusions

Accumulating evidence demonstrates that GRP is a key neurotransmitter in pruriceptors for mediating histamine-independent itch. BNP-NPRA signaling is involved in both itch and pain and does not function upstream of the GRP-GRPR dedicated neuronal pathway. The site of BNP action in itch and pain and its relationship with GRP remain to be clarified.

Keywords:

BNP; NPRA; GRP; GRPR; Itch; Pain; Spinal cord; DRG

B type natriuretic peptide is neither itch specific nor

journal club 13-10-2014 Read More »

Journal Club 2014-10-06

1-s2.0-S156757691300297X-main
Filename : 1-s2-0-s156757691300297x-main.pdf (953 KB)
Caption :

Int Immunopharmacol. 2013 Nov;17(3):502-7. doi: 10.1016/j.intimp.2013.07.012. Epub 2013 Aug 9.

Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38.

Abstract

Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC.

© 2013.

KEYWORDS:

1-s2.0-S156757691300297X-mainPMID:

 

23938254

 

[PubMed – indexed for MEDLINE]

Journal Club 2014-10-06 Read More »

Journal Club 2014. 09. 29.

The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice Short Title: Bile Acid Evoked Itch

The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice

TinaMarie Lieu, Gihan Jayaweera, Peishen Zhao, Daniel P. Poole, Dane Jensen, Megan Grace, Peter McIntyre, Romke Bron, Yvette M. Wilson, Matteus Krappitz, Silke Haerteis, Christoph Korbmacher, Martin S. Steinhoff, Romina Nassini, Serena Materazzi, Pierangelo Geppetti, Carlos U. Corvera, Nigel W. Bunnett

Abstract
Background & Aims: Patients with cholestatic disease have increased systemic concentrations of bile acids (BAs) and profound pruritus. The G protein-coupled BA receptor 1 TGR5 (encoded by GPBAR1) is expressed by primary sensory neurons; its activation induces neuronal hyperexcitability and scratching, by unknown mechanisms. We investigated whether the transient receptor potential ankyrin 1 (TRPA1) is involved in BA-evoked, TGR5-dependent pruritus in mice.

Methods: Co-expression of TGR5 and TRPA1 in cutaneous afferent neurons isolated from mice

was analyzed by immunofluorescence, in situ hybridization, and single-cell PCR. TGR5-induced

activation of TRPA1 was studied in in HEK293 cells, Xenopus laevis oocytes, and primary 2+

sensory neurons by measuring Ca signals. The contribution of TRPA1 to TGR5-induced release of pruritogenic neuropeptides, activation of spinal neurons, and scratching behavior were studied using TRPA1 antagonists or Trpa1–/– mice.

Results: TGR5 and TRPA1 protein and mRNA were expressed by cutaneous afferent neurons. In

HEK cells, oocytes, and neurons co-expressing TGR5 and TRPA1, BAs caused TGR5-dependent

activation and sensitization of TRPA1 by mechanisms that required Gβγ, protein kinase C and 2+

Ca . Antagonists or deletion of TRPA1 prevented BA-stimulated release of the pruritogenic neuropeptides gastrin-releasing peptide and atrial natriuretic peptide B in the spinal cord. Disruption of Trpa1 in mice blocked BA-induced expression of Fos in spinal neurons and prevented BA-stimulated scratching. Spontaneous scratching was exacerbated in transgenic mice that overexpressed TRG5. Administration of a TRPA1 antagonist or the BA sequestrant colestipol, which lowered circulating levels of BAs, prevented exacerbated spontaneous scratching in TGR5 overexpressing mice.

Conclusions: BAs induce pruritus in mice by co-activation of TGR5 and TRPA1. Antagonists of TGR5 and TRPA1, or inhibitors of the signaling mechanism by which TGR5 activates TRPA1, might be developed for treatment of cholestatic pruritus.

KEYWORDS: liver, mouse model, itching, signal transduction

Journal Club 2014. 09. 29. Read More »

Journal Club 2017.9.25

Involvement of leukotriene B4 in itching in a mouse model of ocular allergy.

Andoh T1, Sakai KUrashima MKitazawa KHonma AKuraishi Y.

 

Abstract

Itching of ocular allergy is alleviated but not completely relieved by H(1) histamine receptor antagonists, suggesting that histamine is not the sole itch mediator in ocular allergy. We investigated whether leukotriene B(4) (LTB(4)), a mediator of cutaneous itch, is involved in the itch of ocular allergy in mice. Mice were immunized by the repeated subcutaneous injections of ragweed pollen and alum into the caudal back, and given a subconjunctival injection of ragweed pollen extract into the palpebra for allergic challenge. Challenge with ragweed pollen extract markedly elicited ocular scratching in sensitized mice. The scratching was almost abolished by mast cell deficiency. The H(1) antagonist terfenadine partially inhibited scratching at a dose that almost completely suppressed plasma extravasation. Scratching was inhibited by the glucocorticoid betamethasone and the 5-lipoxygenase inhibitor zileuton at doses that inhibited the challenge-induced production of LTB(4). A subconjunctival injection of LTB(4) at doses 1/10,000 or less than that required for histamine elicited ocular scratching in naïve mice. The LTB(4) receptor antagonist ONO-4057 inhibited the ragweed pollen challenge-induced ocular scratching at doses that suppressed LTB(4)-induced ocular scratching. In addition to histamine, LTB(4) is involved in the ocular itching of pollen allergy. H(1) receptor antagonists with an inhibitory effect on the action and/or production of LTB(4) may have more potent anti-pruritic activity than selective H(1) antagonists.

Copyright © 2012 Elsevier Ltd. All rights reserved.

Journal Club 2017.9.25 Read More »

journal club 2014.9.18

involvement of BLT2 in itch associated response

Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice.

Abstract

BACKGROUND AND PURPOSE:

Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4′-[[pentanoyl (phenyl) amino]methyl]-1,1′-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid).

EXPERIMENTAL APPROACH:

A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used.

KEY RESULTS:

Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose-response curve for compound A showed peaks at around 0.005-0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT(2) receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice.

CONCLUSIONS AND IMPLICATIONS:

Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor antagonists.

journal club 2014.9.18 Read More »

Journal club 2014.9.11

1-s2.0-S030645220600933X-main
1-s2.0-S030645220600933X-main
Filename : 1-s2-0-s030645220600933x-main.pdf (5 MB)
Caption :

Complete overlap of interleukin-31 receptor A and oncostatin M receptor beta in the adult dorsal root ganglia with distinct developmental expression patterns.

Abstract

Interleukin-31 receptor A (IL-31RA) is a newly identified type I cytokine receptor, that is related to gp130, the common receptor of the interleukin (IL) -6 family cytokines. Recent studies have shown that IL-31RA forms a functional receptor complex for IL-31 together with the beta subunit of oncostatin M receptor (OSMRbeta). However, little is known about the target cells of IL-31 because it remains unclear which types of cells express IL-31RA. In our previous reports, we demonstrated that OSMRbeta is expressed in a subset of small-sized nociceptive neurons of adult dorsal root ganglia (DRGs). In the present study, we investigated the IL-31RA expression in the adult and developing DRGs. From a northern blot analysis and in situ hybridization histochemistry, IL-31RA mRNA was found to be expressed in the adult DRGs. According to reverse-transcriptase polymerase chain reaction, IL-31RA mRNA was detected in the DRGs and trigeminal ganglia, while no expression of IL-31RA mRNA was observed in the CNS. Double immunofluorescence staining revealed IL-31RA to be expressed in a subset of small-sized neurons, all of which colocalized with OSMRbeta. In addition, the expression of IL-31 RA was detected in afferent fibers in the spinal cord and the dermis of the skin. We also found that the developmental expression pattern of IL-31RA was different from that of OSMRbeta; IL31RA-positive neurons in DRGs first appeared at postnatal day (PN) 10 and reached the adult level at PN14, whereas OSMRbeta-positive neurons were observed at PN0 for the first time. We previously demonstrated OSMRbeta-expressing neurons to decrease, however, they were not found to disappear in oncostatin M (OSM) -deficient mice. These findings suggest that IL-31 and OSM may thus have redundant functions in the development of OSMRbeta-expressing neurons.

Journal club 2014.9.11 Read More »

Journal club 2014.9.4

Toll-like receptor 7 mediates pruritus.
suppl_Toll-like receptor 7 mediates
Filename : suppl_toll-like-receptor-7-mediates.pdf (1 MB)
Caption :
Toll-like receptor 7 mediates
Filename : toll-like-receptor-7-mediates.pdf (348 KB)
Caption :

Author information 

  • 1Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Abstract

Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease condition.

Journal club 2014.9.4 Read More »

Journal club 2014.8.22

Activation and inhibition of thermosensitive TRP channels by voacangine, an alkaloid present in Voacanga africana, an African tree.

Abstract

Voacangine (1) is an alkaloid found in the root bark of Voacanga africana. Our previous work has suggested that 1 is a novel transient receptor potential vanilloid type 1 (TRPV1) antagonist. In this study, the agonist and antagonist activities of 1 were examined against thermosensitive TRP channels. Channel activity was evaluated mainly using TRP channel-expressing HEK cells and calcium imaging. Herein, it was shown that 1 acts as an antagonist for TRPV1 and TRPM8 but as an agonist for TRPA1 (EC50, 8 μM). The compound competitively blocked capsaicin binding to TRPV1 (IC50, 50 μM). Voacangine (1) competitively inhibited the binding of menthol to TRPM8 (IC50, 9 μM), but it showed noncompetitive inhibition against icilin (IC50, 7 μM). Moreover, the compound selectively abrogated chemical agonist-induced TRPM8 activation and did not affect cold-induced activation. Among these effects, the TRPM8 inhibition profile is unique and noteworthy, because to date no studies have reported a menthol competitive inhibitor of TRPM8 derived from a natural source. Furthermore, this is the first report of a stimulus-selective TRPM8 antagonist. Accordingly, 1 may contribute to the development of a novel class of stimulus-selective TRPM8 blockers

Journal club 2014.8.22 Read More »

Journal Club 2014.8.14

논문

논문
Filename : %eb%85%bc%eb%ac%b8.pdf (1 MB)
Caption :

Allergen-induced production of IL-31 by canine Th2 cells and identification of immune, skin, and neuronal target cells.

Abstract

The canine cytokine IL-31 induces pruritus in dogs and can be detected in dogs with atopic dermatitis; however very little is understood around its interactions with specific canine cells. We hypothesize that IL-31 is involved in the progression of allergic skin disease by coordinating the interaction between the immune system with skin and neuronal systems. The goal of the following work was to identify cells that produce IL-31 as well as cells that may respond to this cytokine. Peripheral blood mononuclear cells (PBMCs) were collected from naïve and house dust mite (HDM) allergen-sensitized beagle dogs and used for ex vivo characterization of cytokine production assessed using ELISpot and quantitative immunoassay. Sensitization to HDM allergen induced a T-helper type 2 (Th2) cell phenotype characterized by an increase in the production of IL-4 protein. Interestingly, repeated allergen challenge over time also resulted in an increase in IFN-γ. Further evaluation showed that co-stimulation of Th2 polarized cells with antigen and the bacterial component Staphylococcus enterotoxin B (SEB) produced higher levels of IL-31 compared to either stimulant alone. Production of IL-31 when PBMCs were stimulated by T cell mitogens suggests T cells as a source of IL-31. Quantitative real-time PCR was utilized to determine expression of the IL-31 receptor alpha chain in canine cell lines and tissue. Canine monocytic cells, keratinocytes, and dorsal root ganglia were shown to express the IL-31 receptor alpha chain mRNA. In a multifaceted disease such as canine atopic dermatitis, the combination of Th2 polarization and microbial presence may lead to IL-31 mediated effects driving inflammation and pruritus by immune cells, keratinocytes, and direct neuronal stimulation,

Journal Club 2014.8.14 Read More »

Journal Club 2014/7/31

 

Involvement of leukotriene B4 in dermatophyte-related itch in mice.

Abstract

BACKGROUND:

Proteinase-activated receptor-2 (PAR2) is involved in dermatophyte-induced scratching and leukotriene B4 (LTB4) release from keratinocytes. We investigated whether PAR2-mediated LTB4 production is involved in dermatophyte-induced scratching.

METHODS:

Dermatophyte extract was injected intradermally and scratching was observed in mice. LTB4 was determined by enzyme immunoassay.

RESULTS:

Dermatophyte extract-induced scratching was inhibited by zileuton (5-lipoxygenase inhibitor), ONO-4057 (LTB4 antagonist), FSLLRY-NH2 (PAR2 antagonist), and anti-PAR2 antibody. Dermatophyte extract injection increased the cutaneous content of LTB4, which was inhibited by zileuton and FSLLRY-NH2.

CONCLUSION:

These results suggest the involvement of LTB4 in dermatophyte-associated itch. LTB4 production might be due to PAR2 stimulation in the skin.

Journal Club 2014/7/31 Read More »

Scroll to Top