Journal Club 2017.9.25

Involvement of leukotriene B4 in itching in a mouse model of ocular allergy.

Andoh T1, Sakai KUrashima MKitazawa KHonma AKuraishi Y.

 

Abstract

Itching of ocular allergy is alleviated but not completely relieved by H(1) histamine receptor antagonists, suggesting that histamine is not the sole itch mediator in ocular allergy. We investigated whether leukotriene B(4) (LTB(4)), a mediator of cutaneous itch, is involved in the itch of ocular allergy in mice. Mice were immunized by the repeated subcutaneous injections of ragweed pollen and alum into the caudal back, and given a subconjunctival injection of ragweed pollen extract into the palpebra for allergic challenge. Challenge with ragweed pollen extract markedly elicited ocular scratching in sensitized mice. The scratching was almost abolished by mast cell deficiency. The H(1) antagonist terfenadine partially inhibited scratching at a dose that almost completely suppressed plasma extravasation. Scratching was inhibited by the glucocorticoid betamethasone and the 5-lipoxygenase inhibitor zileuton at doses that inhibited the challenge-induced production of LTB(4). A subconjunctival injection of LTB(4) at doses 1/10,000 or less than that required for histamine elicited ocular scratching in naïve mice. The LTB(4) receptor antagonist ONO-4057 inhibited the ragweed pollen challenge-induced ocular scratching at doses that suppressed LTB(4)-induced ocular scratching. In addition to histamine, LTB(4) is involved in the ocular itching of pollen allergy. H(1) receptor antagonists with an inhibitory effect on the action and/or production of LTB(4) may have more potent anti-pruritic activity than selective H(1) antagonists.

Copyright © 2012 Elsevier Ltd. All rights reserved.

Journal Club 2017.9.25 Read More »

journal club 2014.9.18

involvement of BLT2 in itch associated response

Involvement of the BLT2 receptor in the itch-associated scratching induced by 12-(S)-lipoxygenase products in ICR mice.

Abstract

BACKGROUND AND PURPOSE:

Recently, we reported that 12(S)-HPETE (12(S)-hydroperoxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid) induces scratching in ICR mice. We hypothesized that 12(S)-HPETE might act as an agonist of the low-affinity leukotriene B4 receptor BLT2. To confirm the involvement of the BLT2 receptor in 12(S)-HPETE-induced scratching, we studied the scratch response using the BLT2 receptor agonists compound A (4′-[[pentanoyl (phenyl) amino]methyl]-1,1′-biphenyl-2-carboxylic acid) and 12(S)-HETE (12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid).

EXPERIMENTAL APPROACH:

A video recording was used to determine whether the BLT2 receptor agonists caused itch-associated scratching in ICR mice. Selective antagonists and several chemicals were used.

KEY RESULTS:

Both 12(S)-HETE and compound A dose dependently induced scratching in the ICR mice. The dose-response curve for compound A showed peaks at around 0.005-0.015 nmol per site. Compound A- and 12(S)-HETE-induced scratching was suppressed by capsaicin and naltrexon. We examined the suppressive effects of U75302 (6-[6-(3-hydroxy-1E,5Z-undecadienyl)-2-pyridinyl]-1,5-hexanediol, the BLT1 receptor antagonist) and LY255283 (1-[5-ethyl-2-hydroxy-4-[[6-methyl-6-(1H-tetrazol-5-yl)heptyl]oxy]phenyl]-ethanone, the BLT2 receptor antagonist) on the BLT2 agonist-induced scratching. LY255283 suppressed compound A- and 12(S)-HETE-induced scratching, but U75302 did not. LY255283 required a higher dose to suppress the compound A-induced scratching than it did to suppress the 12(S)-HETE-induced scratching. One of the BLT(2) receptor agonists, 12(R)-HETE (12(R)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid), also induced scratching in the ICR mice.

CONCLUSIONS AND IMPLICATIONS:

Our present results corroborate the hypothesis that the BLT2 receptor is involved in 12(S)-lipoxygenase-product-induced scratching in ICR mice. We also confirmed that this animal model could be a valuable means of evaluating the effects of BLT2 receptor antagonists.

journal club 2014.9.18 Read More »

Journal club 2014.9.11

1-s2.0-S030645220600933X-main
1-s2.0-S030645220600933X-main
Filename : 1-s2-0-s030645220600933x-main.pdf (5 MB)
Caption :

Complete overlap of interleukin-31 receptor A and oncostatin M receptor beta in the adult dorsal root ganglia with distinct developmental expression patterns.

Abstract

Interleukin-31 receptor A (IL-31RA) is a newly identified type I cytokine receptor, that is related to gp130, the common receptor of the interleukin (IL) -6 family cytokines. Recent studies have shown that IL-31RA forms a functional receptor complex for IL-31 together with the beta subunit of oncostatin M receptor (OSMRbeta). However, little is known about the target cells of IL-31 because it remains unclear which types of cells express IL-31RA. In our previous reports, we demonstrated that OSMRbeta is expressed in a subset of small-sized nociceptive neurons of adult dorsal root ganglia (DRGs). In the present study, we investigated the IL-31RA expression in the adult and developing DRGs. From a northern blot analysis and in situ hybridization histochemistry, IL-31RA mRNA was found to be expressed in the adult DRGs. According to reverse-transcriptase polymerase chain reaction, IL-31RA mRNA was detected in the DRGs and trigeminal ganglia, while no expression of IL-31RA mRNA was observed in the CNS. Double immunofluorescence staining revealed IL-31RA to be expressed in a subset of small-sized neurons, all of which colocalized with OSMRbeta. In addition, the expression of IL-31 RA was detected in afferent fibers in the spinal cord and the dermis of the skin. We also found that the developmental expression pattern of IL-31RA was different from that of OSMRbeta; IL31RA-positive neurons in DRGs first appeared at postnatal day (PN) 10 and reached the adult level at PN14, whereas OSMRbeta-positive neurons were observed at PN0 for the first time. We previously demonstrated OSMRbeta-expressing neurons to decrease, however, they were not found to disappear in oncostatin M (OSM) -deficient mice. These findings suggest that IL-31 and OSM may thus have redundant functions in the development of OSMRbeta-expressing neurons.

Journal club 2014.9.11 Read More »

Journal club 2014.9.4

Toll-like receptor 7 mediates pruritus.
suppl_Toll-like receptor 7 mediates
Filename : suppl_toll-like-receptor-7-mediates.pdf (1 MB)
Caption :
Toll-like receptor 7 mediates
Filename : toll-like-receptor-7-mediates.pdf (348 KB)
Caption :

Author information 

  • 1Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Abstract

Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease condition.

Journal club 2014.9.4 Read More »

Journal club 2014.8.22

Activation and inhibition of thermosensitive TRP channels by voacangine, an alkaloid present in Voacanga africana, an African tree.

Abstract

Voacangine (1) is an alkaloid found in the root bark of Voacanga africana. Our previous work has suggested that 1 is a novel transient receptor potential vanilloid type 1 (TRPV1) antagonist. In this study, the agonist and antagonist activities of 1 were examined against thermosensitive TRP channels. Channel activity was evaluated mainly using TRP channel-expressing HEK cells and calcium imaging. Herein, it was shown that 1 acts as an antagonist for TRPV1 and TRPM8 but as an agonist for TRPA1 (EC50, 8 μM). The compound competitively blocked capsaicin binding to TRPV1 (IC50, 50 μM). Voacangine (1) competitively inhibited the binding of menthol to TRPM8 (IC50, 9 μM), but it showed noncompetitive inhibition against icilin (IC50, 7 μM). Moreover, the compound selectively abrogated chemical agonist-induced TRPM8 activation and did not affect cold-induced activation. Among these effects, the TRPM8 inhibition profile is unique and noteworthy, because to date no studies have reported a menthol competitive inhibitor of TRPM8 derived from a natural source. Furthermore, this is the first report of a stimulus-selective TRPM8 antagonist. Accordingly, 1 may contribute to the development of a novel class of stimulus-selective TRPM8 blockers

Journal club 2014.8.22 Read More »

Journal Club 2014.8.14

논문

논문
Filename : %eb%85%bc%eb%ac%b8.pdf (1 MB)
Caption :

Allergen-induced production of IL-31 by canine Th2 cells and identification of immune, skin, and neuronal target cells.

Abstract

The canine cytokine IL-31 induces pruritus in dogs and can be detected in dogs with atopic dermatitis; however very little is understood around its interactions with specific canine cells. We hypothesize that IL-31 is involved in the progression of allergic skin disease by coordinating the interaction between the immune system with skin and neuronal systems. The goal of the following work was to identify cells that produce IL-31 as well as cells that may respond to this cytokine. Peripheral blood mononuclear cells (PBMCs) were collected from naïve and house dust mite (HDM) allergen-sensitized beagle dogs and used for ex vivo characterization of cytokine production assessed using ELISpot and quantitative immunoassay. Sensitization to HDM allergen induced a T-helper type 2 (Th2) cell phenotype characterized by an increase in the production of IL-4 protein. Interestingly, repeated allergen challenge over time also resulted in an increase in IFN-γ. Further evaluation showed that co-stimulation of Th2 polarized cells with antigen and the bacterial component Staphylococcus enterotoxin B (SEB) produced higher levels of IL-31 compared to either stimulant alone. Production of IL-31 when PBMCs were stimulated by T cell mitogens suggests T cells as a source of IL-31. Quantitative real-time PCR was utilized to determine expression of the IL-31 receptor alpha chain in canine cell lines and tissue. Canine monocytic cells, keratinocytes, and dorsal root ganglia were shown to express the IL-31 receptor alpha chain mRNA. In a multifaceted disease such as canine atopic dermatitis, the combination of Th2 polarization and microbial presence may lead to IL-31 mediated effects driving inflammation and pruritus by immune cells, keratinocytes, and direct neuronal stimulation,

Journal Club 2014.8.14 Read More »

Journal Club 2014/7/31

 

Involvement of leukotriene B4 in dermatophyte-related itch in mice.

Abstract

BACKGROUND:

Proteinase-activated receptor-2 (PAR2) is involved in dermatophyte-induced scratching and leukotriene B4 (LTB4) release from keratinocytes. We investigated whether PAR2-mediated LTB4 production is involved in dermatophyte-induced scratching.

METHODS:

Dermatophyte extract was injected intradermally and scratching was observed in mice. LTB4 was determined by enzyme immunoassay.

RESULTS:

Dermatophyte extract-induced scratching was inhibited by zileuton (5-lipoxygenase inhibitor), ONO-4057 (LTB4 antagonist), FSLLRY-NH2 (PAR2 antagonist), and anti-PAR2 antibody. Dermatophyte extract injection increased the cutaneous content of LTB4, which was inhibited by zileuton and FSLLRY-NH2.

CONCLUSION:

These results suggest the involvement of LTB4 in dermatophyte-associated itch. LTB4 production might be due to PAR2 stimulation in the skin.

Journal Club 2014/7/31 Read More »

Journal club 2014.07.25.

Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca2+/NFAT pathway in airway epithelial cells

Xinying Jia a, Hong Zhang a, Xu Cao b,⇑, Yuxin Yin a, Bo Zhang a,⇑ a Department of Pathology, Peking University Health Science Center, 100191 Beijing, China

b Department of Neurology, Peking University Health Science Center, 100191 Beijing, China

1-s2.0-S0014579314004773-main-2 S0014579314004773-fx1.jpg

1-s2.0-S0014579314004773-main-2

Abstract

The airway epithelium is exposed to a range of irritants in the environment that are known to trig- ger inflammatory response such as asthma. Transient receptor potential vanilloid 1 (TRPV1) is a Ca2+-permeable cation channel critical for detecting noxious stimuli by sensory neurons. Recently increasing evidence suggests TRPV1 is also crucially involved in the pathophysiology of asthma on airway epithelium in human. Here we report that in airway epithelial cells TRPV1 activation potently induces allergic cytokine thymic stromal lymphopoietin (TSLP) release. TSLP induction by protease-activated receptor (PAR)-2 activation is also partially mediated by TRPV1 channels.

Ó 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Journal club 2014.07.25. Read More »

Journal club 2014.7.18

Functional effects of interleukin 31 in human primary keratinocytes

Functional effects of interleukin 31 in human primary keratinocytes.

Author information 

  • 1Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany. kasraie.sadaf@mh-hannover.de

Abstract

BACKGROUND:

Interleukin (IL)-31 is a T-cell cytokine acting through a heterodimeric receptor composed of IL-31RA and OSMR which is expressed on epithelial cells including keratinocytes. A major function of IL-31 in atopic dermatitis (AD) is the induction of pruritus in the skin. Inflammatory effects of IL-31 in human primary keratinocytes (HPKs) still remain unclear. We investigated expression, regulation of the IL-31 receptor as well as functions of IL-31 in HPKs.

METHODS:

Human primary keratinocytes were stimulated with TLR-2 ligands (Pam3Cys, lipoteichoic acid and peptidoglycan), or Th1 and Th2 associated cytokines (IFN-γ and IL-4), respectively. IL-31R expression and regulation as well as functional effects of IL-31 stimulation were then investigated at both the mRNA and protein level and compared with HPKs from patients with AD. The STAT signalling pathway and TLR-2 expression were investigated using Western blot and Immunohistochemical stainings, respectively.

RESULTS:

Pam3Cys or IFN-γ significantly up-regulated IL-31RA and OSMR expression. IL-31 activated STAT-3 phosphorylation in HPKs which was augmented after preactivation with Pam3Cys or IFN-γ. IL-31 enhanced the secretion of CCL2 after up-regulation of the receptor with Pam3Cys or IFN-γ. However, this was not observed in keratinocytes from AD patients where an impaired TLR-2 expression was found.

CONCLUSIONS:

Together, our findings show a functional role of IL-31 in HPKs and provide a new link between TLR-2 ligands and IL-31 which might be dysregulated in AD. Altered function of IL-31 may have implications for cutaneous inflammation in eczema where skin colonization with Staphylococcus aureus and dysregulation of TLR-2 have been described.

Journal club 2014.7.18 Read More »

1-s2.0-S0306452214004175-main
Filename : 1-s2-0-s0306452214004175-main.pdf (1 MB)
Caption :

Itch elicited by intradermal injection of serotonin, intracisternal injection of morphine, and their synergistic interactions in rats

Neuroscience 274 (2014) 119–127

Abstract

We used the cheek model of itch and pain in rats to determine the dose–response relationships for intradermal injection of serotonin and α methylserotonin on scratching behavior. We also determined the dose-related effects of intracisternally injected morphine on scratching, effects that were greatly reduced by administration of the opiate antagonist naloxone. We then examined the interactions of intradermal injection of serotonin and intracisternal injection of morphine on scratching and found that the two procedures act synergistically to increase itch. These results suggest that morphine applied to the CNS is capable of producing itch and greatly increasing itch originating in the skin (hyperknesis).

Abbreviations

  • α-Me-5HT, α-methylserotonin maleate salt;
  • DRG, dorsal root ganglion

Key words

  • hyperknesis;
  • itch;
  • serotonin;
  • morphine;
  • intracisternal injection

 

Read More »

Scroll to Top