2016.09.30

Involvement of TRPV1 and TDAG8 in pruriception associated with noxious acidosis.

Lin SH1, Steinhoff M2, Ikoma A3, Chang YC4, Cheng YR5, Chandra Kopparaju R6, Ishii S7, Sun WH4, Chen CC8.

involvement of trpv1 and tdag8 in pruriception associated with noxious acidosis

Itch and pain are closely related but distinct sensations. Intradermal injection of acid generates pain in both rodents and humans; however, few studies have addressed the intriguing question of whether proton can evoke itch like other algogens at the basis of spatial contrast activation of single nociceptors. Here, we report that (1) citric acid (0.2 M) pH-dependently induced a scratching response in mice when applied intradermally to nape or cheek skin; (2) acidified buffer elevated intracellular calcium levels in dorsal root ganglion (DRG) pruriceptors; (3) injection of intradermal citric acid (pH 3.0) into the nape induced a pruritogen-like but not algogen-like c-Fos immunoreactivity pattern in the cervical spinal cord. Using pharmacological and genetic approaches, we identified potential acid-sensing channels/receptors involved in acidic citrate-evoked itch. Results indicate that TRPV1 but neither ASIC3 nor TRPA1 are involved in the acidic citrate-induced scratching response. Furthermore, one of the proton-sensing G-protein-coupled receptors, TDAG8, was highly (∼71%) expressed in Nppb+ DRG pruriceptors. Acidic citrate but not α-methyl-5-HT, chloroquine, compound 48/80 or bile acid-induced itch was markedly decreased in TDAG8-/- mice. In a heterologous expression system, TDAG8 potentiated the acid-induced calcium response by regulating TRPV1. Thus, proton could evoke pruriception by acting on TDAG8 to regulate TRPV1 activation with its mechanism of future therapeutic relevance.

Journal Club 2016.9.23

The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4.

Abstract

Peripheral neuropathy is dose limiting in paclitaxel cancer chemotherapy and can result in both acute pain during treatment and chronic persistent pain in cancer survivors. The hypothesis tested was that paclitaxel produces these adverse effects at least in part by sensitizing transient receptor potential vanilloid subtype 1 (TRPV1) through Toll-like receptor 4 (TLR4) signaling. The data show that paclitaxel-induced behavioral hypersensitivity is prevented and reversed by spinal administration of a TRPV1 antagonist. The number of TRPV1(+) neurons is increased in the dorsal root ganglia (DRG) in paclitaxel-treated rats and is colocalized with TLR4 in rat and human DRG neurons. Cotreatment of rats with lipopolysaccharide from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS), a TLR4 inhibitor, prevents the increase in numbers of TRPV1(+) neurons by paclitaxel treatment. Perfusion of paclitaxel or the archetypal TLR4 agonist LPS activated both rat DRG and spinal neurons directly and produced acute sensitization of TRPV1 in both groups of cells via a TLR4-mediated mechanism. Paclitaxel and LPS sensitize TRPV1 in HEK293 cells stably expressing human TLR4 and transiently expressing human TRPV1. These physiological effects also are prevented by LPS-RS. Finally, paclitaxel activates and sensitizes TRPV1 responses directly in dissociated human DRG neurons. In summary, TLR4 was activated by paclitaxel and led to sensitization of TRPV1. This mechanism could contribute to paclitaxel-induced acute pain and chronic painful neuropathy. Significance statement: In this original work, it is shown for the first time that paclitaxel activates peripheral sensory and spinal neurons directly and sensitizes these cells to transient receptor potential vanilloid subtype 1 (TRPV1)-mediated capsaicin responses via Toll-like receptor 4 (TLR4) in multiple species. A direct functional interaction between TLR4 and TRPV1 is shown in rat and human dorsal root ganglion neurons, TLR4/TRPV1-coexpressing HEK293 cells, and in both rat and mouse spinal cord slices. Moreover, this is the first study to show that this interaction plays an important role in the generation of behavioral hypersensitivity in paclitaxel-related neuropathy. The key translational implications are that TLR4 and TRPV1 antagonists may be useful in the prevention and treatment of chemotherapy-induced peripheral neuropathy in humans.

The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent Sensory Neuron Responses to TRPV1 by Activation of TLR4

2016.09.09

Coagulation-driven platelet activation reduces cholestatic liver injury and fibrosis in mice.

Abstract

BACKGROUND:

The coagulation cascade has been shown to participate in chronic liver injury and fibrosis, but the contribution of various thrombin targets, such as protease activated receptors (PARs) and fibrin(ogen), has not been fully described. Emerging evidence suggests that in some experimental settings of chronic liver injury, platelets can promote liver repair and inhibit liver fibrosis. However, the precise mechanisms linking coagulation and platelet function to hepatic tissue changes following injury remain poorly defined.

OBJECTIVES:

To determine the role of PAR-4, a key thrombin receptor on mouse platelets, and fibrin(ogen) engagement of the platelet αII b β3 integrin (αIIb β3 ) in a model of cholestatic liver injury and fibrosis.

METHODS:

Biliary and hepatic injury was characterized following 4 week administration of the bile duct toxicant α-naphthylisothiocyanate (ANIT) (0.025%) in PAR-4-deficient mice, mice expressing a mutant form of fibrin(ogen) incapable of binding integrin αII b β3 (Fibγ(Δ5) ), and wild-type mice.

RESULTS:

Elevated plasma thrombin-antithrombin and serotonin levels, hepatic fibrin deposition, and platelet accumulation in liver accompanied hepatocellular injury and fibrosis in ANIT-treated wild-type mice. PAR-4 deficiency reduced plasma serotonin levels, increased serum bile acid concentration, and exacerbated ANIT-induced hepatocellular injury and peribiliary fibrosis. Compared with PAR-4-deficient mice, ANIT-treated Fibγ(Δ5) mice displayed more widespread hepatocellular necrosis accompanied by marked inflammation, robust fibroblast activation, and extensive liver fibrosis.

CONCLUSIONS:

Collectively, the results indicate that PAR-4 and fibrin-αII b β3 integrin engagement, pathways coupling coagulation to platelet activation, each exert hepatoprotective effects during chronic cholestasis.

Coagulation-deiven platelet activation reduces cholestasic liver injury and fibrosis in mice supplementary datas

Journal club 2016. 09.02.

A histamine-independent itch path- way is required for allergic ocular itch

A histamine-independent itch pathway is required for allergic ocular itch

Cheng-Chiu Huang, PhDa, Yu Shin Kim, PhDb, William P. Olson, BSc, Fengxian Li, MDa, d, Changxiong Guo, BAa, Wenqin Luo, MD, PhDc, Andrew J.W. Huang, MD, MPHe, Qin Liu, PhDa, e,

From athe Department of Anesthesiology and the Center for the Study of Itch, Washing- ton University School of Medicine, St Louis, Mo; bthe Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md; cthe Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pa; dthe Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; and ethe Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, Mo.

Itch is the cardinal symptom of allergic conjunctivitis and afflicts 15% to 20% of the population worldwide. Histamine produced by conjunctival mast cells has been implicated as the principal itch mediator that activates histamine receptors on primary sensory fibers to induce allergic ocular itch.1 However, antihistamines cannot completely relieve ocular itch in many cases, suggesting the involvement of a histamine-independent itch pathway. Herein, we sought to identify the histamine- independent neural pathway involved in allergic conjunctivitis and to develop new therapeutic strategies for allergic ocular itch.

Scroll to Top