2017.06.02

Mouse model of imiquimod-induced psoriatic itch.

Abstract

Itch is a major indicator of psoriasis, but the underlying mechanisms behind this symptom are largely unknown. To investigate the neuronal mechanisms of psoriatic itch, we tested whether mice subjected to the imiquimod-induced psoriasis model exhibit itch-associated behaviors. Mice received daily topical applications of imiquimod to the rostral back skin for 7 days. Imiquimod-treated mice exhibited a significant increase in spontaneous scratching behavior directed to the treated area as well as touch-evoked scratching (alloknesis). To characterize this model, we measured the mRNA expression levels of pruritogens and itch-relevant receptors/channels using real-time reverse transcription PCR. The mRNA expression of MrgprA3, MrgprC11, and MrgprD decreased gradually over time in the dorsal root ganglion (DRG) cells. There was no significant change in the mRNA expression of TRPV1 or TRPA1 in DRG cells. TRPV4 mRNA expression was transiently increased in the DRG cells, whereas TRPM8 mRNA was significantly decreased. The mRNA expression levels of histidine decarboxylase and tryptophan hydroxylase 1, as well as the intensity of histamine and serotonin immunoreactivity, were transiently increased in the skin on day 2, returning to baseline by day 7. Histamine H1-receptor antagonists, chlorpheniramine and olopatadine, significantly inhibited spontaneous scratching on day 2, but not day 7. Neither chlorpheniramine nor olopatadine affected alloknesis on day 2 or day 7. These results may reflect the limited antipruritic effects of histamine H1-receptor antagonists on human psoriasis. The imiquimod-induced psoriasis model seems to be useful for the investigation of itch and its sensitization in psoriasis.

00006396-201611000-00019

2017.05.26

Chemokine Receptor CXCR3 in the Spinal Cord Contributes to Chronic Itch in Mice.

 

Abstract

Recent studies have shown that the chemokine receptor CXCR3 and its ligand CXCL10 in the dorsal root ganglion mediate itch in experimental allergic contact dermatitis (ACD). CXCR3 in the spinal cord also contributes to the maintenance of neuropathic pain. However, whether spinal CXCR3 is involved in acute or chronic itch remains unclear. Here, we report that Cxcr3 -/- mice showed normal scratching in acute itch models but reduced scratching in chronic itch models of dry skin and ACD. In contrast, both formalin-induced acute pain and complete Freund’s adjuvant-induced chronic inflammatory pain were reduced in Cxcr3 -/- mice. In addition, the expression of CXCR3 and CXCL10 was increased in the spinal cord in the dry skin model induced by acetone and diethyl ether followed by water (AEW). Intrathecal injection of a CXCR3 antagonist alleviated AEW-induced itch. Furthermore, touch-elicited itch (alloknesis) after compound 48/80 or AEW treatment was suppressed in Cxcr3 -/- mice. Finally, AEW-induced astrocyte activation was inhibited in Cxcr3 -/- mice. Taken together, these data suggest that spinal CXCR3 mediates chronic itch and alloknesis, and targeting CXCR3 may provide effective treatment for chronic pruritus.

Chemokine Receptor CXCR3 in the Spinal Cord Contributes to Chronic Itch in Mice

Journal Club 2017.05.19

The antimicrobial peptide hBD2 promotes itch through Toll-like receptor 4 signaling in mice.

Abstract

The psoriasis biomarker hBD2 produces a robust scratching response in a TLR4-dependent manner in mice. TRPV1 is a downstream mediator of hBD2-induced itch. These findings suggest that hBD2 might act as an endogenous pruritogen in psoriatic itch.

KEYWORDS:

CCR2; CCR6; TLR4; TRPA1; TRPV1; chronic itch; human beta-defensin 2; psoriasis

Cl- channel is required for CXCL10-induced neuronal activation and itch response in a murine model of allergic contact dermatitis

Abstract

Persistent itch often accompanies allergic contact dermatitis (ACD), but the underlying mechanisms remain largely unexplored. We previously demonstrated that CXCL10/ CXCR3 signaling activated a subpopulation of cutaneous primary sensory neurons and mediated itch response after contact hypersensitivity (CHS), a murine model of ACD, induced by squaric acid dibutylester. The purpose of this study was to determine the ionic mechanisms underlying CXCL10-induced neuronal activation and allergic itch. In whole-cell recordings, CXCL10 triggered a current in dorsal root ganglion (DRG) neurons innervating the area of CHS. This current was modulated by intracellular Cl- and blocked by the general Cl- channel inhibitors. Moreover, increasing Ca2+ buffering capacity reduced this current. In addition, blockade of Cl- channels significantly suppressed CXCL10-induced Ca2+ response. In behavioral tests, injection of CXCL10 into CHS site exacerbated itch-related scratching behaviors. Moreover, the potentiating behavioral effects of CXCL10 were attenuated by either of two Cl- channel blockers. Thus, we suggest that the Cl- channel acts as a downstream target mediating the excitatory and pruritic behavioral effects of CXCL10. Cl- channels may provide a promising therapeutic target for the treatment of allergic itch in which CXCL10/CXCR3 signaling may participate.
jn.00187.2017.fulljn.00187.2017.full

Scroll to Top