Journal Club (2023.06.02)

MrgprA3-expressing pruriceptors drive pruritogen-induced alloknesis through mechanosensitive Piezo2 channel

Ping Lu 1Yonghui Zhao 2Zili Xie 2Huan Zhou 3Xinzhong Dong 4Gregory F Wu 5Brian S Kim 6Jing Feng 7Hongzhen Hu 8

Abstract

Although touch and itch are coded by distinct neuronal populations, light touch also provokes itch in the presence of exogenous pruritogens, resulting in a phenomenon called alloknesis. However, the cellular and molecular mechanisms underlying the initiation of pruritogen-induced mechanical itch sensitization are poorly understood. Here, we show that intradermal injections of histamine or chloroquine (CQ) provoke alloknesis through activation of TRPV1- and MrgprA3-expressing prurioceptors, and functional ablation of these neurons reverses pruritogen-induced alloknesis. Moreover, genetic ablation of mechanosensitive Piezo2 channel function from MrgprA3-expressing prurioceptors also dampens pruritogen-induced alloknesis. Mechanistically, histamine and CQ sensitize Piezo2 channel function, at least in part, through activation of the phospholipase C (PLC) and protein kinase C-δ (PKCδ) signaling. Collectively, our data find a TRPV1+/MrgprA3+ prurioceptor-Piezo2 signaling axis in the initiation of pruritogen-induced mechanical itch sensitization in the skin.

Keywords: CP: Neuroscience; PKCδ; PLC; Piezo2; alloknesis; pruriceptor; pruritogens.

Leave a Comment

Scroll to Top