Journal club 2023-08-16

Pamoic Acid-Induced Peripheral GPR35 Activation Improves Pruritus and Dermatitis

Chaeeun Kim 1Yerin Kim 1Ji Yeon Lim 1Minseok Kim 1Haiyan Zheng 1Miri Kim 1Sun Wook Hwang 1

Affiliations expand

Abstract

Background and purpose: Pruritic dermatitis is a disease with a considerable unmet need for treatment and appears to present with not only epidermal but also peripheral neuronal complications. Here we propose a novel pharmacologic modulation targeting both peripheral dorsal root ganglion (DRG) sensory neurons and skin keratinocytes. GPR35 is an orphan G-protein-coupled receptor expressed in DRG neurons and has been predicted to downregulate neuronal excitability when activated. Modulator information is currently increasing for GPR35 and pamoic acid (PA), a salt-forming agent for drugs, has been shown to be an activator solely specific for GPR35. Here we investigated its effect on dermatitic pathology.

Experimental approach: We confirmed GPR35 expression in peripheral neurons and tissues. The effect of PA treatment was pharmacologically evaluated in cultured cells in vitro and in in vivo animal models for acute and chronic pruritus.

Key results: Local PA application mitigated acute non-histaminergic itch and consistently, obstructed DRG neuronal responses. Keratinocyte fragmentation under dermatitic simulation was also dampened following PA incubation. Chronic pruritus in 1-chloro-2,4-dinitrobenzene (DNCB) and psoriasis models was also moderately but significantly reversed by the repeated applications of PA. Dermatitic scores in the DNCB and psoriatic models were also improved by its application, indicating that it is beneficial for mitigating disease pathology.

Conclusions and implications: Our findings suggest that pamoic acid activation of peripheral GPR35 can contribute to the improvement of pruritus and its associated diseases.

Keywords: GPR35; Pamoic acid; dermatitis; itch; neuron.

Leave a Comment

Scroll to Top